

Open IPTV Forum
Release 1 Specification

Volume 5 – Declarative Application
Environment

[V1.2] – [2012-08-27]
Reformatted 2012-09-21

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 2 (289)

Open IPTV Forum

Postal address

Open IPTV Forum support office
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 43 83
Fax: +33 4 92 38 52 90

Internet
http://www.oipf.tv

Disclaimer

The Open IPTV Forum accepts no liability whatsoever for any use of this document.

This specification provides multiple options for some features. The Open IPTV Forum Profiles specification
complements the Release 1 specifications by defining the Open IPTV Forum implementation and deployment profiles.
Any implementation based on Open IPTV Forum specifications that does not follow the Profiles specification cannot

claim Open IPTV Forum compliance.

Copyright Notification

No part may be reproduced except as authorized by written permission.
Any form of reproduction and/or distribution of these works is prohibited.

Copyright 2012 © Open IPTV Forum e.V.

Some material contained herein is the copyright of, or has been supplied by the Digital TV Group

All rights reserved.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

http://www.oipf.tv/

Page 3 (289)

Contents
INTRODUCTION .. 8
1 SCOPE... 9
2 REFERENCES.. 10

2.1 NORMATIVE REFERENCES... 10
2.2 OPEN IPTV FORUM REFERENCES... 11
2.3 INFORMATIVE REFERENCES .. 11

3 CONVENTIONS AND TERMINOLOGY... 12
3.1 CONVENTIONS .. 12
3.2 DEFINITIONS... 12
3.3 ABBREVIATIONS ... 13

4 DAE OVERVIEW .. 14
4.1 ARCHITECTURE OF DAE ... 14

4.1.1 Remote UI and box models (informative)... 14
4.2 GATEWAY DISCOVERY AND CONTROL... 16
4.3 APPLICATION DEFINITION ... 16

4.3.1 Similarities between applications and traditional web pages .. 17
4.3.2 Differences between applications and traditional web pages.. 17
4.3.3 The application tree... 17
4.3.4 The application display model .. 17
4.3.5 The security model.. 18
4.3.6 Inheritance of permissions .. 18
4.3.7 Privileged application APIs .. 18
4.3.8 Active applications list.. 18

4.4 RESOURCE MANAGEMENT... 18
4.4.1 Application lifecycle issues .. 18
4.4.2 Caching of application files .. 19
4.4.3 Memory usage... 19
4.4.4 Instantiating embedded objects and claiming scarce system resources .. 19
4.4.5 Media control .. 19
4.4.6 Use of the display.. 20
4.4.7 Cross-application event handling.. 21
4.4.8 Browser History .. 22

4.5 PARENTAL ACCESS CONTROL .. 22
4.6 CONTENT DOWNLOAD.. 23

4.6.1 Download manager ... 23
4.6.2 Content Access Download Descriptor .. 23
4.6.3 Triggering a download .. 23
4.6.4 Download protocol(s) ... 24

4.7 STREAMING COD ... 24
4.7.1 Unicast streaming.. 24
4.7.2 Multicast streaming... 25

4.8 SCHEDULED CONTENT.. 25
4.8.1 Conveyance of channel list ... 25
4.8.2 Conveyance of channel list and list of scheduled recordings.. 26

4.9 DISPLAY MODEL .. 27
5 DAE APPLICATION MODEL ... 28

5.1 APPLICATION LIFECYCLE .. 28
5.1.1 Creating a new application.. 28
5.1.2 Stopping an application... 29
5.1.3 Application Boundaries... 29

5.2 APPLICATION ANNOUNCEMENT & SIGNALLING.. 29
5.2.1 Introduction... 29
5.2.2 General.. 29
5.2.3 Broadcast related applications... 30
5.2.4 Service provider related applications .. 31
5.2.5 Broadcast independent applications.. 32
5.2.6 Switching between applications.. 32
5.2.7 Signalling format .. 32

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 4 (289)

5.3 EVENT NOTIFICATIONS.. 35
5.3.1 Event notification framework based on CEA 2014... 35
5.3.2 IMS event notification framework .. 37

6 FORMATS .. 45
6.1 CE-HTML ... 45
6.2 CE-HTML REFERENCED FORMATS .. 45
6.3 MEDIA FORMATS.. 45

6.3.1 Media format of A/V media except for audio from memory .. 45
6.3.2 Media format of A/V media for audio from memory ... 45
6.3.3 Media transport ... 45

6.4 SVG .. 45
6.4.1 Supporting SVG documents.. 45
6.4.2 Supporting DOM access between CE-HTML and SVG... 46
6.4.3 Attention to DAE application developers ... 51

7 APIS ... 52
7.1 OBJECT FACTORY API... 52

7.1.1 Methods .. 52
7.1.2 Examples... 54

7.2 APPLICATIONS MANAGEMENT APIS... 54
7.2.1 The application/oipfApplicationManager embedded object ... 54
7.2.2 The Application class.. 56
7.2.3 The ApplicationCollection class ... 59
7.2.4 The ApplicationPrivateData class.. 59
7.2.5 The Keyset class ... 60
7.2.6 New DOM events for application support .. 61
7.2.7 Examples (informative)... 62

7.3 CONFIGURATION AND SETTING APIS .. 63
7.3.1 The application/oipfConfiguration embedded object.. 63
7.3.2 The Configuration class .. 64
7.3.3 The LocalSystem class.. 66
7.3.4 The NetworkInterface class .. 70
7.3.5 The AVOutput class.. 70
7.3.6 The NetworkInterfaceCollection class .. 73
7.3.7 The AVOutputCollection class ... 74

7.4 CONTENT DOWNLOAD APIS .. 74
7.4.1 The application/oipfDownloadTrigger embedded object.. 74
7.4.2 Extensions to application/oipfDownloadTrigger .. 76
7.4.3 The application/oipfDownloadManager embedded object ... 77
7.4.4 The Download class .. 81
7.4.5 The DownloadCollection class ... 83
7.4.6 The DRMControlInformation class .. 84
7.4.7 The DRMControlInfoCollection class .. 85

7.5 CONTENT ON DEMAND METADATA APIS... 85
7.5.1 The application/oipfCodManager embedded object ... 85
7.5.2 The CatalogueCollection class.. 87
7.5.3 The ContentCatalogue class.. 87
7.5.4 The ContentCatalogueEvent class... 88
7.5.5 The CODFolder class.. 88
7.5.6 The CODAsset class ... 90
7.5.7 The CODService class .. 92

7.6 CONTENT SERVICE PROTECTION API .. 95
7.6.1 The application/oipfDrmAgent embedded object ... 95

7.7 GATEWAY DISCOVERY AND CONTROL APIS .. 97
7.7.1 The application/oipfGatewayInfo embedded object ... 97

7.8 COMMUNICATION SERVICES APIS.. 100
7.8.1 The application/oipfCommunicationServices embedded object ... 100
7.8.2 Extensions to application/oipfCommunicationServices for presence and messaging services 104
7.8.3 The UserData class ... 108
7.8.4 The UserDataCollection class ... 108
7.8.5 The FeatureTag class .. 109
7.8.6 The FeatureTagCollection class.. 109
7.8.7 The Contact class .. 109

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 5 (289)

7.8.8 The ContactCollection class.. 110
7.9 PARENTAL RATING AND PARENTAL CONTROL APIS... 110

7.9.1 The application/oipfParentalControlManager embedded object... 111
7.9.2 The ParentalRatingScheme class .. 114
7.9.3 The ParentalRatingSchemeCollection class.. 116
7.9.4 The ParentalRating class... 117
7.9.5 The ParentalRatingCollection class .. 119

7.10 SCHEDULED RECORDING APIS.. 120
7.10.1 The application/oipfRecordingScheduler embedded object.. 120
7.10.2 The ScheduledRecording class ... 122
7.10.3 The ScheduledRecordingCollection class... 127
7.10.4 Extension to application/oipfRecordingScheduler for control of recordings .. 127
7.10.5 The Recording class .. 129
7.10.6 The RecordingCollection class ... 132
7.10.7 The PVREvent class ... 132
7.10.8 The Bookmark class.. 133
7.10.9 The BookmarkCollection class ... 133

7.11 REMOTE MANAGEMENT APIS... 134
7.11.1 The application/oipfRemoteManagement embedded object ... 134

7.12 METADATA APIS.. 136
7.12.1 The application/oipfSearchManager embedded object ... 136
7.12.2 The MetadataSearch class... 139
7.12.3 The Query class... 143
7.12.4 The SearchResults class .. 144
7.12.5 The MetadataSearchEvent class.. 145
7.12.6 The MetadataUpdateEvent class ... 145

7.13 SCHEDULED CONTENT AND HYBRID TUNER APIS ... 145
7.13.1 The video/broadcast embedded object .. 145
7.13.2 Extensions to video/broadcast for recording and time-shift.. 160
7.13.3 Extensions to video/broadcast for access to EIT p/f ... 167
7.13.4 Extensions to video/broadcast for playback of selected components.. 168
7.13.5 Extensions to video/broadcast for parental ratings errors ... 169
7.13.6 Extensions to video/broadcast for DRM rights errors... 170
7.13.7 Extensions to video/broadcast for current channel information.. 171
7.13.8 Extensions to video/broadcast for creating channel lists from SD&S fragments...................................... 171
7.13.9 The ChannelConfig class .. 172
7.13.10 The ChannelList class ... 174
7.13.11 The Channel class ... 175
7.13.12 The FavouriteListCollection class... 180
7.13.13 The FavouriteList class ... 181

7.14 MEDIA PLAYBACK APIS... 183
7.14.1 The CEA 2014 A/V Control embedded object ... 183
7.14.2 Extensions to A/V object for playback through Content-Access Streaming Descriptor........................... 186
7.14.3 Extensions to A/V object for trickmodes .. 186
7.14.4 Extensions to A/V object for playback of selected components ... 188
7.14.5 Extensions to A/V object for parental rating errors .. 188
7.14.6 Extensions to A/V object for DRM rights errors .. 189
7.14.7 Extensions to A/V object for playing media objects... 190
7.14.8 Extensions to A/V object for UI feedback of buffering A/V content.. 191
7.14.9 DOM 2 events for A/V object... 193
7.14.10 Playback of memory audio ... 194

7.15 MISCELLANEOUS APIS .. 195
7.15.1 The application/oipfMDTF embedded object ... 195
7.15.2 The application/oipfStatusView embedded object.. 197
7.15.3 The application/oipfCapabilities embedded object ... 198
7.15.4 The Navigator class... 199
7.15.5 Debug print API.. 200

7.16 SHARED UTILITY CLASSES AND FEATURES.. 200
7.16.1 The StringCollection class .. 200
7.16.2 The Programme class .. 200
7.16.3 The ProgrammeCollection class ... 206
7.16.4 The DiscInfo class... 206
7.16.5 Extensions for playback of selected media components ... 207

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 6 (289)

8 SYSTEM INTEGRATION ASPECTS ... 212
8.1 HTTP PROTOCOL .. 212

8.1.1 HTTP User-Agent header ... 212
8.2 MAPPING FROM APIS TO PROTOCOLS.. 212

8.2.1 Network (Common to Managed and Unmanaged Services)... 212
8.2.2 OITF-IG Interface (Managed Services Only) ... 213
8.2.3 Network (Unmanaged Services only) ... 221

8.3 URI SCHEMES AND THEIR USAGE.. 226
8.4 MAPPING FROM APIS TO CONTENT FORMATS... 227

8.4.1 Character Conversion.. 227
8.4.2 AVComponent .. 228
8.4.3 Channel ... 230
8.4.4 Programme, ScheduledRecording, Recording and Download .. 234
8.4.5 Exposing Audio Description streams as AVComponent objects .. 238

9 CAPABILITIES.. 240
9.1 MINIMUM DAE CAPABILITY REQUIREMENTS... 240

9.1.1 SSL/TTLS Requirements.. 241
9.2 DEFAULT UI PROFILES... 242
9.3 CEA-2014 CAPABILITY NEGOTIATION AND EXTENSIONS ... 245

9.3.1 Tuner/broadcast capability indication ... 246
9.3.2 Broadcasted content over IP capability indication .. 247
9.3.3 PVR capability indication ... 247
9.3.4 Download CoD capability indication.. 248
9.3.5 Parental ratings.. 249
9.3.6 Extended A/V API support ... 249
9.3.7 OITF Metadata API support ... 249
9.3.8 OITF Configuration API support .. 250
9.3.9 Communication Services API Support ... 250
9.3.10 DRM capability indication.. 250
9.3.11 Media profile capability indication ... 251
9.3.12 Remote diagnostics support .. 251
9.3.13 SVG .. 252
9.3.14 Third party notification support .. 252
9.3.15 Multicast Delivery Terminating Function support.. 252
9.3.16 Other capability extensions... 252

10 SECURITY.. 253
10.1 APPLICATION / SERVICE SECURITY... 253

10.1.1 OITF requirements.. 253
10.1.2 Server requirements .. 253
10.1.3 Specific security requirements for privileged JavaScript APIs... 254
10.1.4 Permission names.. 256
10.1.5 Loading documents from different domains ... 257

10.2 USER AUTHENTICATION .. 257
ANNEX A. VOID.. 258
ANNEX B. CE-HTML PROFILING.. 259
ANNEX C. DESIGN RATIONALE (INFORMATIVE) ... 269
ANNEX D. CLARIFICATION OF DOWNLOAD COD, STREAMING COD AND CSP INTERFACES
(INFORMATIVE) .. 270
ANNEX E. CONTENT ACCESS DESCRIPTOR SYNTAX AND SEMANTICS.. 274

E.1 CONTENT ACCESS DOWNLOAD DESCRIPTOR FORMAT.. 274
E.2 CONTENT ACCESS STREAMING DESCRIPTOR FORMAT.. 274
E.3 ABSTRACT CONTENT ACCESS DESCRIPTOR FORMAT.. 275

ANNEX F. CAPABILITY EXTENSIONS SCHEMA .. 279
ANNEX G. CLIENT CHANNEL LISTING FORMAT .. 281
ANNEX H. DISPLAY MODEL... 284

H.1 LOGICAL PLANE MODEL .. 284
H.2 INTERACTION WITH THE VIDEO/BROADCAST AND A/V CONTROL OBJECTS.. 285
H.3 GRAPHIC SAFE AREA (INFORMATIVE) ... 286
H.4 CURRENT CHANNEL (INFORMATIVE) .. 286

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 7 (289)

ANNEXES I-M.. 288
ANNEX N. SERVER ROOT CERTIFICATE SELECTION POLICY (INFORMATIVE)................................ 289

N.1 INTRODUCTION... 289
N.2 BACKGROUND .. 289
N.3 POLICY ... 289

Figures
Figure 1: i-Box Model ..15
Figure 2: 2-Box Model ...16
Figure 3: 3-box Model ..16
Figure 4: General Event Notification Architecture on OITF and Remote UI Server..36
Figure 5: HNI-IGI transaction for outgoing SIP requests from a DAE application..38
Figure 6: HNI-IGI transaction for in-session incoming SIP request...40
Figure 7: What happens when the OITF is first turned on..42
Figure 8: User logs in using the DAE interface ..43
Figure 9: Unsolicited message from the network ...44
Figure 10: State diagram for embedded application/oipfDownloadManager objects (normative)...................77
Figure 11: State machine for a metadata search (informative) ...139
Figure 12: State diagram for embedded video/broadcast objects (informative)...146
Figure 13: PVR States for recordNow and timeshifting using video/broadcast (normative)160
Figure 14: State diagram for embedded A/V Control objects (normative) ...184
Figure 15: Main scenario ..270
Figure 16: Logical plane model (informative) ..284
Figure 17: Graphic safe area ...286

Tables
Table 1: Events applicable for cross application event handling ..21
Table 2: Application signalling...32
Table 3: DAE application control codes ...35
Table 4: HTMLObjectElement interface ..47
Table 5: Window interface ...48
Table 6: DocumentView interface to be added to uDOM...48
Table 7: SVGForeignObjectElement interface to be added to uDOM...48
Table 8: Document interface...49
Table 9: Window interface to be added to uDOM ...49
Table 10: New DOM events for application support ..62
Table 11: Metadata search states (normative)..139
Table 12: State transitions for the video/broadcast embedded object ...147
Table 13: URI schemes and usages ..226
Table 14: Base UI Profile Names ...242
Table 15: Complementary UI Profile Name Fragments ...243
Table 16: Clarification of the “current channel” concept in different scenarios ...286

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 8 (289)

Foreword
This Technical Specification (TS) has been produced by Open IPTV Forum.

This specification provides multiple options for some features. The Open IPTV Forum Profiles specification
complements the Release 1 specifications by defining the Open IPTV Forum implementation and deployment profiles.
Any implementation based on Open IPTV Forum specifications that does not follow the Profiles specification cannot
claim Open IPTV Forum compliance.

Introduction
The Open IPTV Forum Release 1 Specification consists of seven Volumes:

 Volume 1 - Overview,

 Volume 2 - Media Formats,

 Volume 3 - Content Metadata,

 Volume 4 - Protocols,

 Volume 5 - Declarative Application Environment,

 Volume 6 - Procedural Application Environment, and

 Volume 7 - Content and Service Protection.

The present document, the Declarative Application Environment Specification (Volume 5), specifies the DAE
functionality of the Open IPTV Forum Release 1 Solution.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 9 (289)

1 Scope
The Open IPTV Forum has developed an end-to-end solution to allow any consumer end-device, compliant to the Open
IPTV Forum specifications, to access enriched and personalized IPTV services either in a managed or a non-managed
network.

Its functional architecture specification [ARCH] defines a block called OITF which resides inside the residential network.
The OITF includes the functionality required to access IPTV services for both the unmanaged and the managed network.

Part of these functionalities is the Declarative Application Environment (DAE): a declarative language based
environment (browser) based on CEA-2014 [CEA2014A] for presentation of user interfaces and including scripting
support for interaction with network server-side applications and access to the APIs of the other OITF functions.

The DAE is the focus of this specification.

The requirements for specifying this functionality are derived from the following sources:

 Open IPTV Service and Platform Requirement for R1[REQS];

 Open IPTV Functional Architecture for R1 [ARCH].

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 10 (289)

2 References
2.1 Normative References

[3GPP TS 24.229] 3GPP, TS 24.229, “IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and
Session Description Protocol (SDP) Stage 3 (Release 8)”

[CEA2014A] CEA, CEA-2014-A, “Web-based Protocol Framework for Remote User Interface on UPnP Networks and
the Internet (Web4CE)”, (including the August 2008 Errata)

[DVB-IPTV] ETSI, TS 102 034.V1.4.1, “DVB-IPTV 1.3: Transport of MPEG-2 TS Based DVB Services over IP Based
Networks (and associated XML)”

[EN300468] ETSI, EN 300 468, “Digital Video Broadcasting (DVB); Specification for Service Information (SI) in
DVB Systems”

[TISPAN] ETSI, TS 183 063, “Telecommunications and Internet converged Services and Protocols for Advanced
Networking (TISPAN);IMS-based IPTV stage 3 specification”

[IEC62455] IEC, IEC 62455, “Internet protocol (IP) and transport stream (TS) based service access”

[RFC1321] IETF, RFC 1321, “The MD5 Message-Digest Algorithm”, April 1992.

[RFC1918] IETF, RFC 1918 “Address Allocation for Private Internets”, February 1996

[RFC2119] IETF, RFC 2119, “Key words for use in RFCs to Indicate Requirement Levels”, March 1997.

[RFC2246] IETF, RFC 2246, "The Transport Layer Security (TLS) Protocol Version 1.0".

[RFC2326] IETF, RFC 2326, “Real Time Streaming Protocol (RTSP)”, April 1998.

[RFC2616] IETF, RFC 2616, “Hypertext Transfer Protocol -- HTTP/1.1”, June 1999.

[RFC2818] IETF, RFC 2818, “HTTP over TLS”, May 2000.

[RFC5280] IETF, RFC 5280, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile”, May 2008

[RFC3550] IETF, RFC 3550, “RTP: A Transport Protocol for Real-Time Applications”, July 2003.

[RFC3840] IETF, RFC 3840, “Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”, August
2004.

[RFC3841] IETF, RFC 3841, “Caller Preferences for the Session Initiation Protocol (SIP)”, August 2004.

[RFC4346] IETF, RFC 4346, "The Transport Layer Security (TLS) Protocol Version 1.1".

[RFC5246] IETF, RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2".

[RFC5746] IETF, RFC 5746, "Transport Layer Security (TLS) Renegotiation Indication Extension".

[MPEG-7] ISO/IEC, 15938-5, “Multimedia Content Description Interface - Part 5:Multimedia description schemes”, ,
May 2003”

[JFIF] JPEG File Interchange Format, Version 1.02, Eric Hamilton, C-Cube Microsystems, September 1, 1992

[PRES] OMA, OMA-TS-Presence_SIMPLE_XDM-V1_1-20080627-A, “Presence XDM Specification”

[IM] OMA, OMA-TS-SIMPLE_IM-V1_0-20080820-D, “Instant Messaging using SIMPLE”.

[CSSOM-VIEW] W3C, CSSOM View Module, http://www.w3.org/TR/cssom-view/

[CSS3 UI] W3C, “CSS3 Basic User Interface Module”, May 2004.

[CSS3 BG] W3C, “CSS Backgrounds and Borders Module Level 3”, Working Draft 10 September 2008.

[DOM 2 Core] W3C, “Document Object Model (DOM) Level 2 Core Specification - Version 1.0”, November 2000

[DOM 2 Events] W3C, “Document Object Model (DOM) Level 2 Events Specification - Version 1.0”, November 2000

[DOM 2 HTML] W3C, “Document Object Model (DOM) Level 2 HTML Specification - Version 1.0”, January 2003

[DOM 2 Views] W3C, “Document Object Model (DOM) Level 2 Views Specification - Version 1.0”, November 2000

[DOM 3 Events] W3C, “Document Object Model (DOM) Level 3 Events Specification - Version 1.0”, December 2007

[HTML5] W3C, “HTML 5 Working Draft”, 29 March 2012

[SVG Tiny 1.2] W3C, “Scalable Vector Graphics (SVG) Tiny 1.2 Specification”, 22 December 2008

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 11 (289)

[TVA-BID] ETSI, TS 102 822-6-1 V1.4.1 (2007-11), “Broadcast and On-line Services: Search, select, and rightful use
of content on personal storage systems ("TV-Anytime"); Part 6: Delivery of metadata over a bi-directional
network; Sub-part 1: Service and transport”

[Window Object] W3C, “Window Object 1.0”, April 2006

[XHR] W3C, "The XMLHttpRequest Object", April 2008

[TS 101 154] ETSI, TS 101 154, “Digital Video Broadcasting (DVB); Specification for the use of Video and Audio
Coding in Broadcasting Applications based on the MPEG-2 Transport Stream”

[TS 102 539] ETSI, TS 102 539, “Digital Video Broadcasting (DVB); Carriage of Broadband Content Guide (BCG)
information over Internet Protocol (IP)”

[TS 102 809] ETSI, TS 102 809 “Digital Video Broadcasting (DVB); Signalling and carriage of interactive applications
and services in Hybrid broadcast/broadband environments”

[TS 102 851] ETSI TS 102 851, “Digital Video Broadcasting (DVB); Uniform Resource Identifiers (URI) for DVB
Systems”

[Web Messaging] W3C, “HTML5 Web Messaging”, Candidate Recommendation 01 May 2012

[ISO 639.2] ISO 639.2 Codes for the representation of names of languages – Part 2: Alpha-3 code

2.2 Open IPTV Forum References
[REQS] Open IPTV Forum, “Open IPTV Forum Service and Platform Requirements”, V1.1, July 2008.

[ARCH] Open IPTV Forum, “Open IPTV Forum, Functional Architecture”, V1.2, January 2009.

[MEDIA] Open IPTV Forum, “Release 1 Solution Specification, Volume 2 - Media Formats”, V1.2, August 2012.

[META] Open IPTV Forum, “Release 1 Solution Specification, Volume 3 - Content Metadata”, V1.2, August 2012.

[PROT] Open IPTV Forum, “Release 1 Solution Specification, Volume 4 - Protocols”, V1.2, August 2012.

[PAE] Open IPTV Forum, “Release 1 Solution Specification, Volume 6 - Procedural Application Environment”,
V1.2, August 2012.

[CSP] Open IPTV Forum, “Release 1 Solution Specification, Volume 7 - Authentication, Content Protection and
Service Protection”, V1.2, August 2012.

2.3 Informative References
[TS 102 323] ETSI, TS 102 323, “Digital Video Broadcasting (DVB); Carriage and signalling of TV-Anytime

information in DVB transport streams”

[TS 102 796] ETSI, TS 102 796, “Hybrid Broadcast-Broadband TV”

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 12 (289)

3 Conventions and Terminology
3.1 Conventions
All sections and annexes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

In sections of the present document whose presence is indicated by one of the capabilities defined in section 9.3, use of
the [RFC2119] terms “MUST”, “SHALL” or “REQUIRED” applies only when the capability is made available to DAE
applications. They do not have the effect of making that section mandatory.

In this document, “application” means “declarative application” (browser based application) throughout the DAE
platform specification, as opposed to the “procedural applications” (Java based applications) defined in the PAE platform
specification.

In the documented APIs, JavaScript attributes are read-write unless otherwise specified.

The type “Integer” is not a valid JavaScript type as is. It is used as a short hand notation for a subset of type
“Number” which includes only the numbers that can be written without a fractional or decimal component.

3.2 Definitions
Term Definition

Audio from memory Audible notifications and audio clips intended to be played from memory.

Broadcast related
application

Interactive application associated with a television or radio channel, with part of a television channel (e.g.
a particular program or show) or other television content. Often referred to as “red button” applications in
the industry, regardless of how they are actually started by the end user.

Broadcast independent
application

Interactive application not related to any TV channel or TV content or to the currently selected service
provider.

Embedded object A software module that extends the capabilities of the OITF browser. Features provided by an embedded
object are made available to DAE applications through the methods and properties of a specific JavaScript
object.

HTML document An XHTML document and associated style and script files conforming to the restrictions and extensions
defined in the present document.

Key Event Event sent to a DAE application in response to input from the end-user. This input is typically generated in
response to the end-user pressing a button on a conventional remote control. It may also be generated by
some other mechanism on alternative input devices such as game controllers, touch screens, wands or
drastically reduced remote controls.

Mandatory The feature is an absolute requirement of the specification (a “MUST” as defined by RFC 2119).

Non-visual embedded
object

A non-visual embedded object is an embedded object that has no visible representation and cannot get
input focus

Optional The feature is truly optional (a “MAY” as defined by RFC 2119)

Remote UI The display of a UI from one device on a second (remote) device across a network.

Service provider related
application

Interactive application related to the service provider selected through the service provider selection
process.

Trick Mode Facility to allow the User to control the playback of Content, such as pause, fast and slow playback,
reverse playback, instant access, replay, forward and reverse skipping.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 13 (289)

3.3 Abbreviations
In addition to the Abbreviations provided in Volume 1, the following abbreviations are used in this volume.

Abbreviation Definition

AJAX Asynchronous JavaScript and XML

CSS Cascading style sheets

DOM Document object model

GIF Graphics Interchange Format

HE-AAC High Efficiency AAC

JPEG Joint Photographic Experts Group

PNG Portable Network Graphics

PSI Public Service Identifier

SVG Scalable Vector Graphics

WAVE Waveform audio format

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 14 (289)

4 DAE overview
This specification builds on the capability model defined in CEA-2014 [CEA2014A] in order to expose to an IPTV
service provider the capabilities of any particular OITF.

In addition to what is defined in CEA-2014, other terminal capabilities are defined in section 9.3 covering most of the
features defined in this specification. This document does not define whether these capabilities are mandatory or not.
Other documents or specifications need to address that. A small minimum set of capabilities are defined in section 9.2
"Default UI profiles".

Section 3.1 of this document defines how to interpret [RFC2119] terms like "SHALL" in sections of this document
included in a capability. In sections of this document which are not covered by capabilities, terms like "SHALL" apply as
used in each section.

4.1 Architecture of DAE
This section will introduce the basic concepts in the architecture of the DAE specification and their relationships.
[CEA2014A] is the baseline technology for the DAE. In particular the following requirements hold:

 The OITF SHALL support the i-Box model as defined in [CEA2014A] with the changes described in Annex B
of this document, in particular all requirements for an i-Box remote UI client as defined in section 5.1.2 and
sections 5.2 through 5.8 and section 5.10 of CEA-2014-A (i.e. all Remote UI client requirements inside the
subsections that are marked as either “Mandatory for every RUIC” or “Mandatory for i-Box” except where
modified by Annex B of this document). This also includes (through reference) Annexes C, F, G, H, I of
[CEA2014A]. The OITF SHALL also support the following features which are not mandatory for the i-box
model:

o 5.6.1 Multicast notifications

o 5.7.1 Streamed A/V Content

o 5.7.3 Full-screen video

 The OITF MAY support the 2-box and/or 3-box models defined in [CEA2014A]. Note that by default the
interface with the AG and IG deviates from CEA-2014’s 2-box model and 3-box model. An overview of these
differences is given in section 4.1.1.

 A mandatory requirement in CEA-2014-A remains mandatory for the OITF, and recommended and optional
requirements in CEA-2014-A remain recommended and optional for the OITF, unless explicitly specified
differently inside this DAE specification. A detailed description of these differences can be found in Annex B.

 In case of a conflict between a CEA-2014 requirement and a normative statement in the DAE specification, the
normative statement in the DAE specification SHALL have priority.

4.1.1 Remote UI and box models (informative)
The architecture overview from CEA 2014 section 4.1 defines various box models. Next to the i-Box model for accessing
IPTV service providers or 3rd party internet services, it defines a 2-Box and 3-box model for in-home remote UI. Box
Models are divided by not only where the server resides but also where the UI control point reside to perform discovery
and setup of a remote UI connection. In case of the 2-Box and 3-box model the UI control point is a UPnP control point
that discovers in-home servers. In case of the 2-box model, there is a UPnP Remote UI control point inside the OITF. If
the UPnP remote UI control point resides in an external device (e.g. web pad, remote controller), whereby the external
device lists the Remote UI servers and sets up a UI connection between the OITF and Remote UI Server this is called the
3-box model. An OITF that supports the 3-box model must be discoverable through UPnP itself, and expose the profile
information of a Remote UI client to the home network.

For the OITF, only the CEA-2014-A i-Box model is mandatory. The 2-box and 3-box models are optional. The default
interaction with the Application Gateway (AG), the IMS Gateway (IG) and the CSP gateway (CSPG) deviate in the
following manner. However, it is not precluded for an AG, IG, CSPG or other devices in the home network to expose
themselves as a regular UPnP Remote UI server that is compliant with CEA-2014, for example to serve a Remote UI of
its configuration screen to the OITF.

 The AG is similar to a level 1 remote UI server as defined in section 5.1.1.2 of CEA-2014-A, with the difference
that [Req. 5.1.1.2.d] is replaced with a different device description. The device description of the AG is defined
in section 10.1.1.2 of [PROT]. The requirements [Req. 5.1.1.2.b] and [Req. 5.1.1.2.c] are now optional: a URL
to the XML UI Listing is provided by element <agUIServerURL> of the AG Description XML document. Note
that the UPnP Device description of the AG MAY offer a CEA-2014-A compatible level 1 or level 2 remote UI
server in its UPnP device hierarchy that point to the same XML UI listing.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 15 (289)

 The IG enables the discovery of IPTV services through the HNI-IGI interface as defined in [PROT]. This is
quite different from a level 1 or level 2 remote UI server. The details of the device discovery of the IG are
defined in section 10.1.1.1 of [PROT].

Irrespective of the box models, and the discovery mechanism used, the OITF performs the following general steps to set
up a connection to any internet or in-home service:

1. Setup & Connect phase:

a) The OITF connects to a URL of a DAE application offered by a server over an HTTP connection. The
OITF’s capability profile is conveyed to the server, using the “User-Agent” HTTP header, to enable the
server to adjust the contents to the DAE capabilities of the OITF. An OITF that supports additional
content formats (e.g. Flash) can also convey these extensions to the server.

b) After setting up the connection, the XHTML and/or SVG contents that constitute the DAE application
are downloaded to the OITF.

c) This connection can also be set up by a separate UI Control Point in case of an OITF that supports a 3-
box model.

2. Presenting web content:

a) After downloading the XHTML and/or SVG contents, the DAE application may become active and
display a user interface as defined by the XHTML and/or SVG contents.

3. Controlling the UI:

a) Remote control, keyboard and mouse events can be handled within scripts.

b) Native control for web forms and spatial navigation must be supported.

c) Client-side scripting control for the playback of A/V content must be supported.

4. Dynamic UI Updates:

a) User interfaces can be dynamically updated by the server using a persistent TCP connection
(NotifSocket) or through XML updates over an HTTP connection (AJAX).

5. 3rd Party Notifications:

a) Notification messages linked to UI content can arrive on the OITF outside of an active UI interaction
between the OITF and the server.

4.1.1.1 i-Box model
The i-Box Model supports the remote presentation and control of UIs that reside on a server on the Internet (WAN). The
client (OITF) resides within the home domain, and is either non-discoverable and has a built-in “Connection setup and
control” to perform connection management related operations, or is discoverable by an external so called UI Control
Point within the home domain that allow the connection management related operations to be controlled by another
device. This configuration is depicted in the diagram below.

Remote UI Server

(Internet)

UI Control
Point

= optional

Connection
Setup and

control

OITF/DAE

(Non-Discoverable or
Discoverable)

Figure 1: i-Box Model

4.1.1.2 2-Box model
The 2-Box Model describes a configuration in which the server is discoverable in the home network. Since the client is
not discoverable, it must have a UI Control Point in order to be functional in the network to be able to discover an AG
device description (as defined in section 10 of [PROT]), or a Remote UI server description as described in section 5.1 of
[CEA2014A].

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 16 (289)

Figure 2: 2-Box Model

4.1.1.3 3-Box model
When both the Remote UI Server and the Remote UI Client are discoverable, the configuration can be described by the
3-Box UI Model. This configuration has no restriction on the location of the UI Control Point for the discovery and
connection management, as illustrated in the diagram below.

Application Gateway
(AG) and/or RUI

Server

(Discoverable)
UI Control

Point

OITF/DAE

(Discoverable)

UI Control
Point

Application
Gateway (AG)

and/or RUI Server

UI Control
Point

(Non Discoverable)

OITF/DAE

UI Control
Point

(Discoverable)

Figure 3: 3-box Model

4.2 Gateway discovery and control
This section describes how DAE applications discover the information of the gateway and subsequently interacts with the
gateway. The discovery of the IG and AG by the OITF are defined in section 10.1 of [PROT]. The discovery takes place
prior to the DAE application being initialized. The information about the discovered gateways is made available to DAE
applications through the application/oipfGatewayInfo embedded object. DAE applications can use this gateway
information to interact with the discovered gateways (e.g. IG, AG, CSP gateway and so on). The
application/oipfGatewayInfo embedded object SHALL be made accessible through the DOM with the interface
as defined in section 7.7.1.

Access to the functionality of the application/oipfGatewayInfo embedded object is privileged and SHALL
adhere to the security requirements defined in section 10.1

4.3 Application definition
This section defines what is meant by the concept of a ‘DAE application’; which files and assets are considered to be part
of a DAE application and how this relates to DAE application security and lifecycle.

A DAE application is an associated collection of documents (typically JavaScript, CSS and HTML or SVG documents)
from the same fully-qualified domain, unless specified differently in section 5.1.1.3. Whilst the document is loaded
within the browser, an additional browser object (the oipfApplicationManager object), defined in section 7.2.1 is
present and accessible by the DAE application. The oipfApplicationManager object provides access to the
Application class defined in section 7.2.2.

The difference between a DAE application and a traditional web page is that web pages are stand-alone with no formal
concept of a group of pages or a context within which a group of pages are loaded and execute. For this reason, the
definition and details of a DAE application focuses on the application execution environment and the additional
capabilities provided to DAE applications. The next subsections describe some of the differences. Additional details
about the DAE application lifecycle can be found in section 5.1

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 17 (289)

4.3.1 Similarities between applications and traditional web pages
DAE applications are comprised of pages which are conceptually no different from traditional web pages. Both pages in
a DAE application and traditional web pages can include the contents of other documents. These included documents can
have a variety of types, including Cascading Style Sheets (CSS), JavaScript, SVG, JPEG, PNG and GIF.

A dynamic DOM, combined with XMLHttpRequest, permits AJAX-style changes to the current page in a DAE
application or web page without necessarily replacing the entire document.

4.3.2 Differences between applications and traditional web pages
A DAE application provides shared context and state common to a number of pages – a concept which doesn't formally
exist in the web. Loading and unloading pages within the context of a DAE application is the same as loading and
unloading web pages.

The application context includes information about the state of an application from the platform’s perspective –
permissions, priority (for example, which to terminate first in the event of insufficient resources) and similar information
that spans all documents within an application during the lifetime of that application.

An OITF MAY support the execution of more than one application simultaneously. Applications MAY share the same
screen estate in a defined and controlled fashion. This differs from multiple web pages, which are typically handled
through different browser “windows” or “tabs” and may not share the same screen estate concurrently (although the
details of this behaviour are often browser-dependent). This also differs from the use of frames, which, apart from
iframes, do not support overlapping screen estate. Where simultaneous execution of more than one application is
supported, both foreground and background applications SHALL be supported simultaneously.

Where simultaneous execution of more than one application is supported, applications SHALL be recorded within a
hierarchy of applications. Each object representing an application possesses an interface that provides access to methods
and attributes that are uniquely available to applications. For example, facilities to create and destroy applications can be
accessed through such methods

4.3.3 The application tree
Where simultaneous execution of more than one application is supported, applications are organised into a tree structure.
Using the createApplication() method as defined in section 7.2.2.2, applications can be either be started as child
nodes of the application or as a sibling of the application (i.e. added as an additional child of this application’s parent).
The root node of an application tree is created upon loading an initial application URI or by creating a sibling of an
application tree’s root node. An OITF MAY keep track of multiple application trees. Each of these individual application
trees are connected to a hidden system root node maintained by the OITF that is not accessible by other applications.

Applications created while the DAE environment is running (e.g. as a result of an external notification) that are not
created through createApplication() SHALL be created as children of the hidden system root node.

4.3.4 The application display model
Applications SHALL be displayed on the OITF in one of the application visualization modes as defined in section 4.4.6.

The mode used SHALL be determined prior to initialisation of the DAE execution environment and shall persist until
termination or re-initialization of the DAE execution environment. The means by which this mode is chosen is outside
the scope of this specification.

Each application has an associated DOM Window object and a DOM Document object that represents the document that
is currently loaded for that application. Even “windowless” applications that are never made visible have an associated
DOM Window object.

4.3.4.1 Manipulating an application’s DOM Window object
Each application has an associated DOM Window object and a DOM Document object that represents the document that
is currently loaded for that application. Even “windowless” applications that are never made visible have an associated
DOM Window object.

Standard DOM Window methods are used to resize, scroll, position and access the application document (see section
4.4.6). Many browsers restrict the size or location of windows; these restrictions SHALL NOT be enforced for windows
associated with applications within the browser area. Any area of the display available to DAE applications may be used
by any application. Thus, ‘widget’-style applications can create a small window that contains only the application without
needing to be concerned with any minimum size restrictions enforced by browsers.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 18 (289)

4.3.5 The security model
Each application has a set of permissions to perform various privileged operations within the OITF. The permissions that
are granted to an application are defined by the intersection of three permission sets:

1. The permissions requested by the application, using the mechanism defined in section 10.

2. The permissions supported by the OITF. Some permissions may not be supported due to capability restrictions
(e.g. the permission_pvr permission will never be granted on a receiver that does not support PVR capability).

3. The permissions that may be granted, as determined by user settings or configuration settings specified by the
operator (e.g. blacklists or whitelists; see section 10 for more information). This is a subset of (2), and may be
different for different users.

4.3.6 Inheritance of permissions
Applications created by other applications (e.g. using the methods described in sections 5.1.1.2 or 5.1.1.3) SHALL NOT
inherit the permissions issued to the parent application. The permissions granted to the new application will be defined by
the mechanism specified in section 10.

When an application uses cross-document messaging as defined in [HTML5] to communicate with another application,
any action carried out in response to the message SHALL take place in the security context of the application to which
the message was sent. Applications SHOULD take care to ensure that privileged actions are only taken in response to
messages from an appropriate source.

4.3.7 Privileged application APIs
The privilege model implemented with applications is based upon requiring access to the Application object
representing an application in order to access the privileged functionality related to application lifecycle management and
inter-application communication.

4.3.7.1 Compromising the security
Since applications have access to Application objects, it is possible for applications to compromise the security of the
framework by passing these objects to untrusted code. For example, an application could raise an event on an untrusted
document and pass a reference to its Application object in the message. Where simultaneous execution of more than
one application is supported, any calls to methods on an Application object from pages not running as part of an
application from the same provider SHALL throw an error as defined in section 10.1.1.

4.3.8 Active applications list
Where simultaneous execution of more than one application is supported, the OITF SHALL maintain a list of application
nodes ordered in a “most recently activated” order – the active applications list. This list is used by the cross-application
event dispatch algorithm as defined in section 4.4.7 and is not directly visible to applications.

An application is activated through calling the activateInput() method of the application node. This marks an
application as active and SHALL insert the application at the start of the active application list (removing it from the list
first if it is already present).

An application is deactivated through the deactivateInput() method of the application node. This marks an
application inactive and SHALL remove it from the active application list.

The currently active application is the application at the start of the active application list.

This specification does not define any behaviour if more than one copy of the browser is executing.

4.4 Resource Management
This section describes how resources (including non-granular resources such as memory and display area) are shared
between multiple applications that may be running simultaneously. Applications SHOULD be able to tolerate the loss of
scarce resources if they are needed by another application, and SHOULD follow current industry best practises in order
to minimize the resources they consume.

This specification is silent about the mechanism for sharing resources between DAE applications, PAE applications and
other applications running on the OITF. In the remainder of this section and this document, the term application refers
solely to DAE applications

4.4.1 Application lifecycle issues
Where simultaneous execution of more than one application is supported, if an application attempts to start and not
enough resources are available, the application with the lowest priority MAY be terminated until sufficient resources are

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 19 (289)

available for the new application to execute or until no applications with a lower priority are running. Applications
without a priority associated with them (e.g. applications started by the DRM agent, see section 5.1.1.6) SHALL be
assumed to have a priority of 0x7F.

Applications may register a listener for ApplicationUnloaded events (see section 7.2.1.3) to receive notification of
the termination of a child application, where simultaneous execution of more than one application is supported.

Failure to load an asset (e.g. an image file) or CSS file due to a lack of memory SHALL have no effect on the lifecycle of
an application, but may result in visual artefacts (e.g. images not being displayed). Failure to load an HTML file due to a
lack of memory MAY cause the application to be terminated.

4.4.2 Caching of application files
Application files MAY be cached on the receiver in order to improve performance; this specification is silent about the
use of any particular caching strategy.

4.4.3 Memory usage
Applications SHOULD use current industry best practises to avoid memory leaks and to free memory when it is no
longer required. In particular, applications SHALL unregister all event listeners before termination, and SHOULD
unregister them as soon as they are no longer required.

Where available, applications SHALL use explicit destructor functions to indicate to the platform that resources may be
re-used by other applications.

Applications MAY use the gc() method on the application/oipfApplicationManager embedded object to
provide hints to the OITF that a garbage collection cycle should be carried out. The OITF is not required to act on these
hints.

The LowMemory event described in section 7.2.1.3 SHALL be generated when the receiver is running low on memory.
The amount of free memory that causes this event to be generated is implementation dependent. Applications may
register a listener for these events in order to handle low-memory situations as they choose best.

4.4.4 Instantiating embedded objects and claiming scarce system
resources

The objects defined in section 7 of this specification are embedded objects. These are typically instantiated through the
standard DOM 2 methods for creating HTML objects or the oipfObjectFactory as defined in section 7.1.

All embedded objects as defined in section 7 SHALL NOT claim scarce system resources (such as a hybrid tuner) at the
time of instantiation. Hence, instantiation SHALL NOT fail if the object type is supported (and sufficient memory is
available).

For each embedded object for which scarce resource conflicts may be a problem, the state diagram and the accompanying
text define how to deal with claiming (and releasing) scarce system resources. NOTE: instantiated embedded objects do
not have to be added to the DOM tree in order for their JavaScript API to be usable).

Once an OIPF embedded object has been instantiated, dynamic change of its MIME type which could cause the
properties and methods associated with the object to change SHALL be ignored.

For instance, it is possible to change the MIME type of an AV Control embedded object from <video/mpeg> to
<video/mp4> but it is not possible to change the MIME type of an OIPF embedded object from
“application/oipfApplicationManager” to “application/oipfConfiguration”

4.4.5 Media control
If insufficient resources are available to present the media, the attempt to play the media SHALL fail except for the
specific case of starting to play audio from memory (see below). For the video/broadcast object, this shall be indicated by
a ChannelChangeError event with a value of 11 for the error state. For an AV Control object, the error property
shall take the value 3.

Instantiation of a video/broadcast or A/V Control object SHALL NOT cause any scarce resources to be claimed.
Scarce resources such as a media decoder SHALL only be claimed following a call to the
bindToCurrentChannel(), setChannel(), nextChannel() or prevChannel() methods on a
video/broadcast object or the play() method on an A/V Control object. By implication, instantiating a
video/broadcast or A/V Control object does not cause the media referred to by the object’s data attribute to start
playing immediately. See section 7.13.1.1 for details of when scarce resources are released by a video/broadcast
object and section 7.14.1.1 when scarce resources are released by an A/V Control object.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 20 (289)

In the specific case of a request to play audio from memory while broadcast or broadband streaming audio is being
played and where the terminal does not support mixing the audio from memory with the already playing audio, the
following SHALL apply;

 The audio from memory SHALL have priority and SHALL interrupt the already playing audio.

 The interrupted presentation SHALL be resumed automatically by the terminal when the interrupting audio ends
(i.e. when the AV Control object transitions to the stopped, finished or error states).

This specification is intentionally silent about handling of resource use by embedded applications including scheduled
recordings.

4.4.6 Use of the display
A compliant OITF SHALL support at least one of the following application visualization modes for managing the display
of applications:

1. Multiple applications may be visible simultaneously, with the OITF managing focus between applications, but
with DAE applications managing their own size, position and visibility. In this mode the following holds:

a) Many browsers restrict the size or location of windows; in this application visualization mode these
restrictions SHALL NOT be enforced for windows associated with applications within the browser
area. Any area of the display available to DAE applications may be used by any application, and no
minimum size is enforced for applications. An application may choose to resize or display its DOM
Window as appropriate, using properties and methods on the DOM Window object. If this application
visualization mode is supported, the following properties and methods SHALL be supported on the
Window object in addition to what is stated in [CEA2014A]: resizeTo(), moveTo(), and screen.

Note that the display of applications exceeding the maximum size of the browser area or of applications
partially positioned outside the browser area may be cropped.

b) applications from the same service provider that are intended to run simultaneously SHOULD take care
to co-ordinate their use of the display in order to ensure that important UI elements are not obscured.

2. Multiple applications may be visible simultaneously, with the OITF managing the size, position, visibility and
focus between applications. In this case methods resizeTo() and moveTo() are either not supported on the
Window object, or have no effect whilst the OITF renders applications in this mode.

3. Only one application is visible at any time; switching to a different application either hides the currently-visible
application (where simultaneous execution of more than one application is supported) or terminates the currently
visible application (where simultaneous execution of more than one application is not supported). The
mechanism for switching between applications is implementation-dependent. In this case, the show(),
hide(), activate() and deactivate() methods of the Application object provide hints to the
execution environment about whether the user should be notified that an application requires attention. The
mechanism for notifying the user is outside the scope of this specification.

Applications SHALL be created with an associated DOM Window object, that covers the display area made available by
the OITF to a DAE application. The size of the DOM Window can be retrieved through properties ‘innerWidth’ and
‘innerHeight’ of the DOM Window object.

Any areas of the browser area outside the DOM Window that become visible when it is resized SHALL be transparent –
any video (if the hardware supports overlay as per the <overlay*> elements defined in section 9.2 for the capability
profiles) or applications (if multiple applications can be visible simultaneously) with a lower Z-index will be visible
except where the application has drawn UI elements.

Broadcast-related and service provider related applications SHALL initially be created as invisible to avoid screen flicker
during application start-up. Broadcast-independent applications SHALL initially be created as visible. Once loaded (as
SHALL be indicated through an onload event handler), the application then typically calls the show() method of its
parent Application object.

If the application does not ever need to be visible, then its DOM Window object will never be shown. In that case, the
application should take steps to avoid being formatted to reduce computation and memory overheads. This is typically
accomplished by setting the default CSS style of the document’s BODY element to display: none.

Because all applications have associated DOM Window objects, it is possible to make any application visible even if it is
not normally intended to be visible. This is of particular benefit during debugging of hidden service type applications.

Application developers SHOULD explicitly set the background color of the application <body> and <html> elements.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 21 (289)

Setting the background color to 'transparent' (e.g. using CSS construct html, body { background-color: transparent; })
will allow the underlying video to be shown for those areas of the screen that are not obscured by overlapping non-
transparent (i.e. opaque) children of the <body> element.

Changing the visibility of an application by calling method show() or hide() on the Application object SHALL
NOT affect its use of resources. The application still keeps running and listens to events unless the application gets
deactivated (see section 4.3.8) or destroyed (see section 5.1.2).

4.4.7 Cross-application event handling
As defined in [DOM 2 Events], standard DOM events are raised on a specific node within a single document. This
specification extends the event capability of the OITF through cross-application events handling, but does not change the
DOM2 event model for dispatching events within documents. Where simultaneous execution of more than one
application is supported, an OITF SHALL implement the cross-application events and cross-application event handling
model described in this section.

1. An OITF SHALL implement the following cross-application event handling model. Cancelling the propagation
of an event in any phase SHALL abort further raising of the event in subsequent phases. If an event is eligible
for cross-application event handling (see below for more information) and is targeted at a node in the most
recently activated application, then dispatch the event to that node using the standard DOM 2 bubbling/capturing
of events. Default actions normally taken by the browser upon receipt of an event SHALL be carried out at the
end of this step, unless overridden using the existing DOM 2 methods (i.e. using method
preventDefault()).

2. If the cross-application event is not prevented from being propagated beyond the document root node of the
application by using the exist DOM 2 methods, the event is dispatched to other active applications in the
application hierarchy using the active applications list described in section 4.3.8. The OITF SHALL iterate over
the applications in the active application list, from most recently activated to least recently activated, dispatching
the event to the Application object of each application in turn. Note that the event SHALL NOT be
dispatched to the document, and default browser action SHALL NOT be carried out during this phase.
Cancelling the propagation of an event in this phase SHALL abort further raising of the event in subsequent
applications.

Event listeners for cross-application events are registered and unregistered using the same mechanism as for DOM2
events. Listeners for cross-application events may be registered on the Application object as well as on nodes in the
DOM tree.

The following events are valid instances of cross-application events and are applicable for cross application event
handling:

System
event Description

KeyPress Generated when a key has been pressed by the user. May also be generated when a key
is held down during a key-repeat.

KeyUp Generated when a key pressed by the user has been released.

KeyDown Generated when a key has been pressed by the user.

Table 1: Events applicable for cross application event handling

The KeyPress, KeyUp and KeyDown events are all targeted cross-application events. The events are targeted at the
node that has the input focus.

All events dispatched using the standard dispatchEvent() method are normal DOM events, not cross-application
events. As defined in Annex B bullet “Changes to 5.4”, the OITF SHALL support the window.postMessage()
method for cross-document messaging as defined in [HTML5]. The method takes two arguments; a message (of type
String) to be dispatched and the targetOrigin, which defines the expected origin (i.e. domain) of the target window, or “*”
if the message can be sent to the target regardless of its origin. The target of the event is the “window” of a specific
application. Applications can use this method to send events to other applications. The receiving application MAY
receive those events and interpret them, or MAY dispatch them in its DOM using standard DOM dispatchEvent()
methods.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 22 (289)

The visibility of an application SHALL NOT affect the cross-application event handling algorithm as defined above – an
active application SHALL receive cross-application events even when it is not visible.

Incoming key events are dispatched using the cross-application event handling algorithm as defined above.

NOTE: This event dispatch model enables key events to be dispatched to multiple applications. Applications wishing to
become the primary receiver for key events SHOULD call Application.activateInput(). Even though
Application.activateInput() is called, another application may subsequently be activated. In order to ensure
that sensitive key input (e.g. PINs or credit card details) is limited only to the application it is intended for, applications
SHOULD check that they are the primary receiver of the key events (using the Application.isPrimaryReceiver
property and/or the ApplicationPrimaryReceiver and ApplicationNotPrimaryReceiver events defined in
section 7.2.6) and SHOULD ‘absorb’ key events by calling the stopPropagation() method on the DOM2 key
event.

4.4.8 Browser History
OIPF applications may use the methods on the History object to navigate the history list. The history list SHALL NOT
go back beyond the initial page of an OIPF application.

If a remote features a “back” or “back up” key, or one offering similar functionality, the OITF SHALL handle this key as
described below:

1. A VK_BACK key event SHALL be dispatched to applications following the normal key handling process
described in section 4.4.7

2. If the default behaviour of the key event is not stopped by an application using preventDefault(), then the
OITF SHALL NOT load the previous page in its history list for DAE applications.

4.5 Parental access control
The present document permits a number of different approaches to parental access control.

a. Enforcement in the network.

An IPTV service provider MAY manage parental access control completely in the network. Applications running on
application servers back in the network MAY decide to block access to content or arrange a DAE application to ask for a
PIN code as necessary. This approach can apply to any kind of content - streaming on-demand content, IP broadcast
content and to downloaded content.

No specific support is needed for this approach in the specification.

b. Enforcement in the OITF CSP / CSPG for protected MPEG-2 TS content

IPTV service providers MAY use the content protection mechanism for protected content to enforce access control to
protected content. If used, this enforcement will happen in the OITF and in some cases in the CSP Gateway as well. In
this approach, the content protection mechanism in the OITF would ask for PIN codes as needed.

The OITF CSP/CSPG-based enforcement of this approach and link to DAE API and events are defined in:

 clause 4.1.5.1 of [CSP], for CSP terminal centric approach,

 clauses 4.2.2, 4.2.3.4.1.1.5 and 4.2.3.4.1.1.6 of [CSP] for CI+ CSP Gateway centric approach

 clauses 4.2.2 and 4.2.4.5.1 of [CSP] for DTCP-IP CSP Gateway centric approach

c. enforcement in the OITF

An OITF MAY enforce parental access controls themselves. Examples include embedded applications offering access to;

 IP delivered content based on information delivered to the metadata CG client.

 classical broadcast content in a hybrid OITF

 content delivered to the OITF (either streaming or downloaded)

In approaches b) and c), PIN dialogs would be generated by code forming part of the OITF implementation. The APIs in
section 7.9 provide some control over these dialogs. The PIN would typically be configured by an embedded application
but MAY also be configured by a DAE application using the optional APIs defined in section 7.3.2 “The Configuration
class” of the present document.

These approaches b) and c) are reflected in a number of failure modes as defined in the following clauses of the
specification;

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 23 (289)

 For broadcast channels (both IP and hybrid), in section 7.13.1 "The video/broadcast embedded object", see
"onChannelChangeError" where errorState 3 is defined as "parental lock on channel"

 Parental rating errors and parental rating changes during playback of A/V content through the CEA-2014 A/V
embedded object and the video/broadcast object are reported according to the mechanism described in
section 7.14.5 “Extensions to A/V object for parental rating errors”, respectively 7.13.5 “Extensions to
video/broadcast for parental ratings errors”.

NOTE: Due to the variation in regulatory requirements and deployment scenarios, the present document is intentionally
silent about which of these approaches or combination of approaches is used.

4.6 Content download
This requirements in this section apply if the <download> element has been given value “true” in the OITF’s capability
profile as specified in section 9.3.4.

4.6.1 Download manager
An OITF SHALL support a native download manager (i.e. “Content Download” component) to perform the actual
download and storage of the content, and which allows the user to manage (e.g. suspend/resume, cancel) and monitor the
download, in a consistent manner across different service providers. The download manager SHALL continue
downloading as a background process even if the browser does not have an active session with the server that originated
the download request anymore (e.g. has switched to another DAE application), even after a device power-down or
network failure, until it succeeds or the user has given permission to terminate the download. (see 4.6.4 on HTTP Range
support to resume HTTP downloads after a power/network failure).

The native download manager SHALL be able to offer a visualization of its status through the
application/oipfStatusView embedded object as defined in section 7.15.2.1.

If the attribute "manageDownloads" of the <download> element in the client capability description is unequal to
“none”, the native download manager SHALL offer control over the active downloads through the JavaScriptJavaScript
API defined by the application/oipfDownloadManager embedded object in section 7.4.3.

NOTE 1: Once (sufficient data) of the content has been downloaded, the content MAY be played back using a native
application, and MAY be played back using an A/V control object. In the latter case, see method setSource() in
section 7.14.7 for more information.

NOTE 2: Annex D clarifies the content download usage scenario in more detail

4.6.2 Content Access Download Descriptor
An OITF SHALL support parsing and interpretation of the Content Access Download Descriptor document format with
the specified semantics, syntax and MIME type as specified in Annex E.

4.6.3 Triggering a download
An OITF SHALL support a non-visual embedded object of type “application/oipfDownloadTrigger”, with the
JavaScript API as defined in sections 7.4.1 and 7.4.2 to trigger a download.

The following subsections define some details about the different ways of triggering a download.

4.6.3.1 Using the registerDownload() method
The registerDownload() method takes a Content Access Download Descriptor as one of its arguments and passes it
to the underlying native download manager in order to trigger a download. The following requirements apply:

1. The Content Access Download Descriptor MAY be created in JavaScript or MAY be fetched using
XMLHttpRequest. To this end the OITF SHALL pass the data inside the content access download descriptor
into the XMLHttpRequest.responseXML property in JavaScript for further processing, if the OITF
encounters an HTTP response message with the Content-Type of the
“application/vnd.oipf.ContentAccessDownload+xml”, as the result of an XMLHttpRequest.

NOTE: The behaviour in other cases when the OITF encounters an HTTP response message with the Content-
Type “application/vnd.oipf.ContentAccessDownload+xml”, for example whilst following a link
as specified by an anchor element (<a>), is not specified in this document.

2. If the OITF supports a DRM agent with a matching DRMSystemID as per section 9.3.10, the OITF SHALL
pass included DRM-information as part of the <DRMControlInformation> elements of a content-access
download descriptor to the DRM agent.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 24 (289)

3. If the content access descriptor contains multiple content items to be downloaded, then all items are considered
to belong together. Therefore, the download of each individual content item has the same download identifier in
that case (whereby the ContentID may be used for differentiation). The order by which the items are
downloaded, is defined by the OITF.

4.6.3.2 Using the registerDownloadURL() method
The registerDownloadURL() method takes a URL as one of the arguments and passes it to the underlying native
download manager in order to trigger a download. The URL MAY point to any type of content. The URL MAY also
point to a Content Access Download Descriptor (i.e. with argument contentType having value
“application/vnd.oipf.ContentAccessDownload+xml”). In that case, the method returns a download
identifier. The OITF will then fetch the Content Access Download Descriptor, after which the same must happen as if
method registerDownload() as defined in section 4.6.3.1 with the given Content Access Download Descriptor as
argument was called.

4.6.3.3 Using the optional registerDownloadFromCRID() method
The registerDownloadFromCRID() method is an optional method as defined in section 7.4.2 and takes a CRID as
one of its arguments that is passed to the underlying native download manager in order to trigger a download.

4.6.3.4 General behaviour regarding triggering a download
The following are general behavioural requirements apply to triggering downloads:

a) Fetching the content will typically be initiated immediately. However, the OITF MAY defer the download to a
later time.

b) An OITF SHOULD offer an easy way to continue the UI interaction with the server from which a download has
been initiated, e.g. allowing him/her to continue browsing on the page that triggered the download.

c) An OITF SHOULD inform the user if the content-type of a content item being retrieved cannot be interpreted by
the OITF.

4.6.4 Download protocol(s)
The OITF SHALL support the HTTP protocol for download as specified in section 5.2.3 of [PROT]. In addition, the
OITF SHALL support the following requirements:

1. As specified in section 5.2.3 of [PROT], if a server offers a content item for download using HTTP, the server
SHALL make sure that HTTP Range requests as defined in [RFC2616] are supported for HTTP GET requests to
the URI of that downloadable content item, in order to be able to resume downloads (e.g. after power or network
failure).

2. If the OITF receives an HTTP 404 “File Not Found” status code, the OITF SHALL stop his attempts to resume
the download, and go to a “Failed Download” state. The handling of other error codes is implementation
dependent.

3. If after downloading a content item the size of the downloaded content item does not match the indicated size
parameter or the value for the optional attribute “MD5Hash” of the given <ContentURL> does not match the
hash of the downloaded content, the OITF SHOULD remove the downloaded content item.

 Integration with download protocols other than HTTP are not specified in this document.

4.7 Streaming CoD
This section defines the content-on-demand streaming interfaces for both DRM-protected and non-DRM protected
content.

4.7.1 Unicast streaming
An OITF SHALL support unicast streaming by setting the “data” property of the CEA-2014 A/V Control object to any of
the following three types of value:

1. A Public Service Identifier (PSI) as defined in Protocol Specification [PROT].

2. The HTTP or RTSP URL of the content to be streamed. See [Req. 5.7.1.f] of [CEA2014A] for details.

3. The URL of a Content Access Streaming Descriptor, in the manner as defined in section 7.14.2. In this case the
application SHALL set the “type” attribute to “application/vnd.oipf.ContentAccessStreaming+xml”.

Example:
<object id=”d1” data=http://www.openiptv.org/fetch?contentID=25
type=”application/vnd.oipf.ContentAccessStreaming+xml” width=”200” height=”100”/>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 25 (289)

In the first two cases, the application SHALL set the “type” attribute to the MIME type of the content referred to by the
value of the “data” attribute to provide a hint about the expected content type, in order for the browser to instantiate the
proper CEA-2014 A/V Control object.

In order to support method 3, an OITF SHALL support parsing and interpretation of the Content Access Streaming
Descriptor document format with the specified semantics, syntax and MIME type as specified in Annex E.2.

Support for Unicast streaming through the CEA-2014-A A/V object SHALL be indicated as defined in section 9.3.11.

For more details about setting up the A/V stream through a Content Access Streaming Descriptor, see section 7.14.2,
section 8 and Annex D.

4.7.2 Multicast streaming
If an OITF has indicated support for IPTV channels through a <video/broadcast> element with type ID_IPTV_* (as
defined in section 7.13.11.1) the OITF SHALL support passing a content-access descriptor through the
‘contentAccessDescriptorURL’ argument of the ‘setChannel’-method of the video/broadcast object (as
defined in section 7.13.1.3). If the content-access descriptor includes DRM information, the OITF SHALL pass this
information to the DRM agent.

4.8 Scheduled content
If an OITF has indicated support for playback and control of scheduled content, then it SHALL support the
“video/broadcast” embedded object defined in section 7.13.1. In addition, it SHALL adhere to the requirements for
conveyance of the channel list as specified in 4.8.1. To protect against unauthorized access to the tuner functionality and
people’s personal favourite lists, the OITF SHALL adhere to the security model requirements as specified in section 10.1,
in particular the tuner related security requirements in section 10.1.3.1.

NOTE: This section and section 7.13 are focused on control and display of scheduled content received over local tuner
functionality available to an OITF. The term “tuner” is used here to identify a piece of functionality to enable switching
between different types of scheduled content services that are identified through logical channels. This includes IP
broadcast channels, as well as traditional broadcast channels received over a hybrid tuner.

NOTE 2: The APIs in this section allow for deployments whereby the channel line-up and favourite lists for broadcasted
content are managed by the client, the server, or a mixture thereof.

4.8.1 Conveyance of channel list
To enable a service to control the tuner functionality on an OITF, the OITF needs to convey the channel list information
that is managed by native code on the OITF device to the service (either the channel list information is provided locally
on the OITF via JavaScript, or the channel list is communicated directly to a server). This information includes the list of
uniquely identifiable channels that can be received by the physical tuner of a hybrid device, including information about
how the channels are ordered and whether or not these channels are part of zero or more favourite lists. It also includes
the channel line-up and the favourite lists that MAY be managed by an OITF for IP broadcast channels.

The API supports two methods of conveying the channel list information to a service:

1. Method 1: through JavaScript, by using the method “getChannelConfig()”, as defined in section 4.8.1.1.
2. Method 2: through an HTTP POST message that is sent upon the first connection to a service that requires

tuner control, as defined in section 4.8.1.2.

An OITF SHALL support method 1, and SHOULD support method 2.

If an OITF conveys the channel list information using the HTTP POST message defined in method 2, then the server
SHALL, if it supports method 2, receive the conveyed channel list information and SHOULD rely on this information for
the purpose of exerting tuner control. If a service supports using the channel list information sent through the HTTP
POST method to exert tuner control , the server SHALL indicate this compatibility with method 2 using the postList
attribute specified in section 9.3.1 (i.e., <video_broadcast postList=”true”>true</video_broadcast>),
in the server capability description.

If the server does not support method 2, the service SHALL rely on the getChannelConfig() method defined in
section 7.13.1.3 to access the channel list information. If an OITF does not support method 2, the HTTP message of the
first connection to the service that requires tuner control SHALL be an HTTP GET message with an empty payload and
the service SHALL instead rely on the getChannelConfig() method defined in section 7.13.1.3 to access the
channel list information. If support for method 2 is indicated by both the OITF and the server (through respective
capability exchanges), the OITF SHALL convey the channel list information using method 2.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 26 (289)

If an OITF does not manage/maintain the channel line-up (i.e. does not have a locally stored channel line up), the
getChannelConfig() method described in section 7.13.1.3 SHALL return null, and the HTTP message described
in section 4.8.1.2 SHALL be an HTTP GET message with an empty payload. In that case, the application MAY use the
createChannelObject() method as defined in section 7.13.1.3 to create channel objects that can be used on
subsequent setChannel requests, and in this way can manage/maintain its own channel list.

NOTE: conveyance of the channel list SHALL adhere to the security model requirements as specified in sections 10.1.3.1
and 10.1.3.1.1.

4.8.1.1 Method 1: JavaScript method “getChannelConfig()”
The OITF SHALL support method “getChannelConfig” as defined in section 7.13.1.3 for the video/broadcast
embedded object. This method returns a ChannelConfig object as defined in section 7.13.9.

4.8.1.2 Method 2: HTTP POST message
If an OITF supports sending the channel list through HTTP POST and a server has indicated that it uses the posted
channel list information to exert control of the tuner functionality of an OITF (i.e. using attribute postList=”true” in
the server capability description) for a particular service, then the OITF SHALL issue an HTTP POST over TLS if it
decides to connect to that service. The body of the HTTP POST over TLS request SHALL contain the Client Channel
Listing, which SHALL adhere to the semantics, syntax and XML Schema that are defined for the Client Channel Listing
in Annex G. The server SHALL silently ignore unknown elements and attributes that are part of the Client Channel
Listing.

The server SHALL return a HTML document.

If the favourite lists are not (partially) managed by the OITF, the Client Channel Listing SHALL neither contain the
“FavouriteLists” nor the “CurrentFavouriteList” element.

4.8.2 Conveyance of channel list and list of scheduled recordings
This section and the following sections SHALL apply to OITFs that have indicated <record>true</record> as defined in
section 9.3.3 in their capability profile.

To enable a service to schedule recordings of content that is to be broadcast on specific channels, the OITF needs to
convey the channel list information that is managed by the native code on the OITF. This information typically includes
the channel line-up of the tuner of a hybrid device. The conveyance of channel list information and scheduled recordings
is based on the same two methods of conveying the channel list information to a service as defined in section 4.8.1:

1. Method 1: through JavaScript, by using the method “getChannelConfig()”. To this end, the OITF SHALL
support method “getChannelConfig” as defined in section 7.10.1.1 for the
application/oipfRecordingScheduler object.

2. Method 2: through an HTTP POST message as defined in section 4.8.1.2 that is sent upon the first connection to
a service that has indicated that it requires control of the recording functionality and that has indicated
compatibility with method 2 using the postList attribute specified in section 9.3.3 (i.e., <recording
postList=”true”>true</recording>), in the server capability description for a particular service.

An OITF SHALL support method 1, and SHOULD support method 2. If support for method 2 is indicated by both the
OITF and the server (through respective capability exchanges), the OITF SHALL convey the channel list information
using method 2. Otherwise, the HTTP message of the first connection to the service that requires tuner control SHALL
be an HTTP GET message with an empty payload.

If a server has indicated that it requires control of both the tuner functionality and the recording functionality available to
an OITF (i.e. by including both <video_broadcast> and <recording> with value true in the OITF’s capability
description), the body of the HTTP POST SHALL contain a single instance of the Client Channel Listing whereby the
<Recordable> element defined in Annex G SHALL be used to indicate whether channels that can be received by the
tuner of the OITF can be recorded or not.

If an OITF does not manage the channel line-up, the getChannelConfig() method described in section 7.10.1.1
SHALL return null, and the HTTP message described in section 4.8.1.2 SHALL be an HTTP GET message with an
empty payload.

In addition, the OITF SHALL also support method ‘getScheduledRecordings’ as defined in section 7.10.1.1. This
method returns a ScheduledRecordingCollection object, which is defined in section 7.10.3.

Note that the conveyance of the channel listing and the scheduled recordings is subject to the security model
requirements specified in section 10.1, and in particular the recording related security requirements in section 10.1.3.2.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 27 (289)

4.9 Display Model
Annex H describes the logical display model of an OITF and the relationship between DAE application graphics and
video.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 28 (289)

5 DAE Application Model
5.1 Application lifecycle
This section describes the lifecycle of a DAE application, including when an application is launched, when it is
terminated and the behaviour when a DAE leaves the boundary of one application and enters another.

APIs related to DAE applications are described in section 7.2 “Applications Management APIs”.

5.1.1 Creating a new application
5.1.1.1 General
The present document defines a number of different application lifecycle models. These include;

 Using the Application.createApplication API call

 CE-HTML third party notifications

 Service provider related applications (from SD&S signalling)

 Applications started by the DRM agent

 Applications provided by the AG through the remote UI

 Broadcast-related applications (either be from SD&S signalling or from broadcast signalling in a hybrid device)

 Broadcast independent applications

5.1.1.2 Broadcast-independent applications
Broadcast-independent applications are started by fetching the first page of the application from a URL.

5.1.1.3 Using the Application.createApplication API call
Creating a new application is accomplished by creating a new Application object via the
Application.createApplication() method. Calling this method will create a new application and add it to the
application tree in the appropriate location.

// Assumes that the application/oipfApplicationManager object has the ID
// “applicationmanager”
Var appMgr = document.getElementById(“applicationmanager”);
var self = appMgr.getOwnerApplication(Window.document);

// create the application as a child of the current application
var child = self.createApplication(url_of_application, true);

The URL passed to the createApplication method SHALL be one of the following;

 An HTTP or HTTPS URL referring to an XHTML page as defined by section 6.1 of this specification.

 The DVB URI for launching service provider related applications signalled through SD&S as defined in section
8.3 of this specification

 The DVB URI for launching broadcast-related applications from the current service signalled through SD&S as
defined in section 8.3 of this specification

5.1.1.4 CE-HTML third party notifications
The lifecycle of these is defined by [CEA2014A] and summarised in section 5.3.1 of the present document.

5.1.1.5 Starting applications from SD&S Signalling
These are described in section 5.2, “Application announcement & signalling”. All applications started by SD&S
signalling are treated as siblings and are children of the hidden system root node (see section 4.3.3).

5.1.1.6 Applications started by the DRM agent
These SHALL be considered as broadcast-independent applications.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 29 (289)

5.1.1.7 Applications provided by the AG through the remote UI
OITFs MAY include the capability to start these applications from an embedded application. OITFs SHALL include the
ability for applications to discover these as defined by the “application/oipfGatewayInfo” embedded object in
section 7.7.1.

5.1.2 Stopping an application
The destroyApplication() method (as specified in section 7.2.2.2) SHALL terminate the application. Application
may register a listener on the ApplicationDestroyRequest event in order to do some clean-up before being
destroyed completely. After the destroyApplication() method returns, further execution of the specified
application SHALL NOT occur.

When an application is terminated, all associated resources SHALL be freed (or marked available for garbage collection).
Any active network connections will be terminated. Any media content being presented by the application is stopped,
although recordings or content downloads initiated by the application will not be affected.

Note that terminating an application does not imply any effect on the state of the DAE execution environment.

Additional requirements are defined for stopping selected service provider applications and applications part of scheduled
content services in sections 5.2.4.3 and 5.2.3.2 respectively.

5.1.3 Application Boundaries
All of the pages that make up an application are contained within its application boundary. This is the “fully qualified
domain name” (FQDN) of the initial page of the application in the absence of an application_boundary_descriptor.

If an applicationBoundary element is present in the SD&S signalling for an application as defined in [TS 102 809],
the application boundary SHALL also include the FQDNs listed in the applicationBoundary element. If this
element is not present, then the application boundary SHALL consist of the FQDN of the initial page of the application.

For files requested with XMLHttpRequest, the Same-Origin Policy SHALL be extended using the application domain;
i.e. any domain in the application domain SHALL be considered of same origin.

The OITF SHALL remove any IP address in the application boundary which is within the private address space as
defined in [RFC1918], before launching the application.

5.2 Application announcement & signalling
5.2.1 Introduction
This specification defines 3 basic types of application;

 Applications related to one or more broadcast TV or radio channels. These MAY run while one of the channels
which they are related to is being presented by the OITF. These are signalled through the SD&S broadcast or
package discovery records or included in an application discovery record which is referenced from the broadcast
or package discovery record.

 Applications related to the service provider selected through the service selection process. These MAY run at
any time until the service provider selection process is repeated and a different service provider selected. These
are signalled through the SD&S service provider discovery record or included in an application discovery record
which is referenced from the service provider discovery record.

 Applications independent of either of the above. These MAY run at any time. These are started by other
applications and are not signalled anywhere.

Each of these types is described in more detail below.

5.2.2 General
Section 4.3.3 of this specification describes how one application may start another application either as a sibling or as a
child. All applications started via SD&S signalling as described in this section SHALL be started as children of the
hidden system root node, as described in section 5.1.1.5.

Any application may be signalled as AUTOSTART or PRESENT (see “Table 3: DAE application control codes” below
and section 5.2.4.3 of [TS 102 809]). Applications signalled as AUTOSTART are intended to be automatically started by
the OITF. Applications signalled as PRESENT are intended to be started only by other applications. Broadcast related
applications may alternatively be signalled as KILL (see below) or PREFETCH.

It is up to the OITF manufacturer to ensure a good quality of experience concerning;

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 30 (289)

 Navigation within a DAE application.

 Accessing the available DAE applications, both available for launch, and those already running.

 Managing the life cycles of all DAE applications able to be used concurrently.

It is outside the scope of this specification whether there are dedicated keys on a remote control (e.g. the "menu", "home"
or "guide" key), there is an entry in an on-screen menu or there are some other mechanism.

It is OPTIONAL for the OITF to support an exit mechanism directly accessible by the end-user. If one is supported, it is
outside the scope of this specification whether this mechanism is a button on a remote control, an item in an on-screen
menu or something else. If such a mechanism is supported then it SHALL only stop the application the end-user is
currently interacting with and any children. The parent application and any siblings SHALL not be stopped.

Additionally any application MAY be stopped under the following circumstances;

 The application itself exits.

 The application's parent exits.

 It is stopped by the application which started it or another application which has a reference to it's application
object.

 In response to changes in the application signalling as defined below for broadcast related applications and
service provider related applications.

In all these above cases except the first (when an application itself exits) when an application is stopped by the OITF, an
ApplicationDestroyRequest event (as defined in section 7.2.6) SHALL be raised on the application. In the
following error conditions, an application being stopped SHOULD have an ApplicationDestroyRequest event
raised if this is possible.

 The OITF runs out of resources for applications and has to stop some of them in order to keep operating
correctly.

 The OITF has determined that an application is non-responsive or has crashed.

5.2.3 Broadcast related applications
5.2.3.1 General
Providers of broadcast TV channels may signal broadcast related applications as part of the SD&S broadcast discovery
record (see section 3.2.3 of [META], also sections 4.2.1 and 5.4.3.2 of [TS 102 809]). As an optimisation, broadcast
related applications which are associated with a group of channels may be signalled as part of the SD&S package
discovery record (see section 3.2.3 of [META], also section 5.4.3.1 of [TS 102 809]). Broadcast related applications may
be included in the SD&S broadcast or package discovery records or included in an application discovery record which is
referenced from the broadcast discovery record.

When a broadcast TV channel starts being presented, the OITF SHALL follow the “Procedure for Starting and Stopping
Broadcast Related Applications on Channel Change” defined below.

While a broadcast TV channel is being presented, the OITF SHALL monitor for changes in the SD&S information as
defined by section 4.1.1.3 of [META]

When changes are detected, the OITF SHALL follow the “Procedure for Starting and Stopping Broadcast Related
Applications When Signalling is Updated” defined below.

NOTE: The typical “red button” behaviour can be achieved by having the first page of an AUTOSTART broadcast
related application be full screen and transparent to video except for an image showing a red button. Only when the user
generates a “red” key event does the application display more of its user interface.

5.2.3.2 Stopping
In addition to what is stated in section 5.2.2, broadcast related applications are stopped when

 Changing between channels as defined in the “Procedure for Starting and Stopping Broadcast Related
Applications on Channel Change” below.

 The OITF detects an update to the signalling for a currently presented channel as defined in “Procedure for
Starting and Stopping Broadcast Related Applications When Signalling is Updated” below.

 The OITF stops presenting any broadcast channel.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 31 (289)

5.2.3.3 Procedure for starting and stopping broadcast related applications on
channel change

When a scheduled content service is selected, the following SHALL apply;

 The OITF shall determine if there are any applications signalled as part of the service as defined by sections
3.3.2.1 and 3.3.2.2 of [META].

 Applications which are related to that scheduled content service and which are signalled with a control code of
AUTOSTART SHALL be started if not still running from any previously presented linear TV service. They
SHALL be started commencing with the highest priority application working downwards in priority while
resources in the OITF permit.

 Applications which are related to that scheduled content service, which are signalled with a control code of
AUTOSTART and which are already running from a previously presented scheduled content service SHALL
a) continue to run uninterrupted if the serviceBound element of the ApplicationDescriptor in their
signalling has value false
b) be stopped and re-started if the serviceBound element of the ApplicationDescriptor in their
signalling has value true

 Applications which are related to that scheduled content service and which are signalled with a control code of
PRESENT SHALL continue to run if already running but SHALL NOT be started if not already running.

 Running applications from any previously presented scheduled content service which are not part of the new
scheduled content service SHALL be stopped as part of the change of presented service.

5.2.3.4 Procedure for starting and stopping broadcast related applications when
signalling is updated

When the application signalling for a scheduled content service is updated, the following apply;

 Applications which are added to the service with a control code of AUTOSTART SHALL be automatically
started when their addition is detected by the OITF. They SHALL be started commencing with the highest
priority application working downwards in priority while resources in the OITF permit. Applications added to
the service with any other control code SHALL NOT be automatically started.

 Applications which are part of the service whose control code changes to AUTOSTART from some other value
SHALL be automatically started unless already running.

 An application which is removed from the service or whose control code changes to KILL SHALL be stopped.

5.2.4 Service provider related applications
5.2.4.1 Signalling
Service providers may signal service provider related applications as part of their SD&S service provider discovery
record (see section 3.2.3 of [META], also sections 4.2.3 and 5.4.3.3 of [TS 102 809] where they are referred to as
“unbound applications”). Service provider related applications may either be directly included in the SD&S service
provider discovery record or included in an application discovery record which is referenced from the service provider
discovery record.

Service providers MAY label one of the applications in their SD&S service provider discovery record using the
application usage values defined in section 3.2.3.3.3 of [META] as follows;

 a service discovery application using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:servicediscovery”. An application labelled in this way SHOULD be the
highest priority AUTOSTART application signalled.

 an EPG application using the ApplicationUsage identifier “urn:oipf:cs:ApplicationUsageCS:2009:epg”.

 a VoD application using the ApplicationUsage identifier “urn:oipf:cs:ApplicationUsageCS:2009:vod”.

 a communication service application using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:communication”.

 An application implementing non-native HNI-IGI using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:hni-igi”.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 32 (289)

5.2.4.2 Starting
Service provider related applications are started under the following circumstances;

 When a service provider is selected, the OITF SHALL start the AUTOSTART applications signalled by that
service provider starting with the highest priority one working downwards in priority while resources in the
OITF permit.

 By the end-user using a mechanism provided by the OITF.

 By other service provider related applications.

The OITF SHALL include a mechanism to show the service discovery application and MAY include mechanisms to
show the EPG, VoD and the communication service applications. These mechanisms;

 SHALL load the application into the browser if not already loaded.

 SHALL show this application to the end-user.

 SHALL work at all times when the currently selected service provider has an application labelled in this way.

It is outside the scope of this specification whether these mechanisms are buttons on a remote control, items in an on-
screen menu or something else. If a button is used, this mechanism SHALL work regardless of which application has
focus and the key event corresponding to the button used SHALL NOT be delivered to DAE applications.

5.2.4.3 Stopping
In addition to what is stated in 5.2.2, service provider related applications are stopped when

 the service provider selection process is re-run and a different service provider is selected.

 the selected service provider updates the list of applications in their SD&S service provider discovery record, an
application is removed and the OITF detects this update (see section 4.1.1.3 of [META]).

5.2.5 Broadcast independent applications
Applications which are independent of both broadcasters and the currently selected service provider are started and
stopped as described in section 5.2.2 “General” above. They do not require any signalling.

5.2.6 Switching between applications
Two cases of switching between applications are relevant in this specification;

 Switching between visible applications and invisible ones.

 NOTE: Switching between a visible application and an invisible one is conceptually a little like changing
between tabs in a PC browser however without any implication of a particular user interface.

 Switching between simultaneously visible applications where this OPTIONAL feature is supported.

A number of possible mechanisms exist for switching between visible applications and invisible ones. Some examples
include the following;

 Hard coded mechanisms in the terminal for switching to a specific application (e.g. to the service discovery
application, the content guide, the communication service application).

 An OPTIONAL terminal specific UI showing available DAE applications which the user can switch to.

5.2.7 Signalling format
The following table defines how the signalling defined in [TS 102 809] SHALL be interpreted when used to signal DAE
applications.

Table 2: Application signalling

Descriptor or Element Summary Status in this specification

5.4.4.1 ApplicationList List of
applications

Required

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 33 (289)

Descriptor or Element Summary Status in this specification

5.4.4.2 Application Name, identifier,
type specific
descriptor

Required.

5.4.4.3 ApplicationIdentifier 2 numbers Required

5.4.4.4 ApplicationDescriptor Numerous
application
attributes

Required

The serviceBound element is only
applicable to broadcast related
applications.

5.4.4.5 VisibilityDescriptor Attribute –
indicate if
application can
be visible to
users and/or
other
applications

Optional

5.4.4.6 IconDescriptor Icon for
application

The filename in the IconDescriptor
SHALL be an HTTP URL. Use of the
icon signalled here by the OITF is
OPTIONAL.

5.4.4.7 AspectRatio Preferred aspect
ratio for icons

Only relevant if the OITF uses the
IconDescriptor.

5.4.4.8 MhpVersion Specification
version

As defined in clause 3.2.3.3.2 of
[META].

5.4.4.9 StorageCapabilities Can the
application be
stored or cached

Ignored.

5.4.4.10 StorageType Enumeration
used in 5.4.4.9

As 5.4.4.9

5.4.4.11 ApplicationType Application type For DAE and PAE applications, the
appropriate value from the
ApplicationTypeCS scheme from
[META] SHALL be used.

5.4.4.12 DvbApplicationType Enumeration for
5.4.4.11

Ignored.

5.4.4.13 ApplicationControlCode Enumeration for
5.4.4.4.

See below.

5.4.4.14 ApplicationSpecificDescriptor Container Ignored

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 34 (289)

Descriptor or Element Summary Status in this specification

5.4.4.15 AbstractIPService Supports
grouping of
unbound
applications

Only one group SHALL be signalled

5.4.4.16 ApplicationOfferingType Used as part of
application
discovery record

Required

5.4.4.17 ServiceDiscovery Used as part of
application
discovery record

Required

5.4.4.18 ApplicationUsageDescriptor Indicates that an
application
provides a
specific service

Required

FLUTESessionDescriptor as defined
by section B.4 of [META]

Support for
distributing
applications
through
multicast.

SHALL be supported if OITFs support
FLUTE.

5.4.4.19
TransportProtocolDescriptorType

Abstract base
type

Required

5.4.4.20 HTTPTransportType Type for
applications
accessed by
HTTP

Required

5.4.4.21 OCTransportType Type for
applications
accessed by
DSM-CC object
carousel

Ignored

5.4.4.22 ComponentTagType Encodes a DVB
component tag

Ignored

5.4.4.23
SimpleApplicationLocationDescriptorT
ype

Encodes the
location of the
start page of an
application
relative to one of
the transport
types.

Required

5.4.4.24
SimpleApplicationBoundaryDescriptor
Type

Encodes an
application
boundary.

Required

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 35 (289)

Elements and descriptors marked as ‘Ignored’ SHALL NOT be processed for DAE applications. Servers MAY include
these in application signalling.

The application control code SHALL be interpreted as follows for DAE applications

AUTOSTART: The application is eligible to be started automatically. Sections 5.2.3.2 and 5.2.4.1
above define the order in which AUTOSTART applications are started if more than one is signalled.

PRESENT: The OITF SHALL take no action. The OITF MAY provide a mechanism to allow the end-
user to start applications signalled as PRESENT. However since there is no requirement for such a
mechanism, an IPTV service provider who signals applications with this control code SHALL provide
an application able to start them.

KILL: The application SHALL be terminated (see ApplicationDestroyRequest in section 7.2.6).

PREFETCH: The OITF MAY start fetching files, data or other information needed to start the
application but SHALL NOT start the application. Implementations MAY consider this control code to
be the same as PRESENT.

Table 3: DAE application control codes

The other control codes from [TS 102 809] are not defined for DAE applications. Control codes not defined for DAE
applications SHALL be ignored..

5.3 Event Notifications
This section describes 4 different notification frameworks (In-session notification based on Home network domain, In-
session notification based on Internet domain, 3rd Party notification based on Home network domain, 3rd Party
notification based on internet domain) presented by CEA 2014. Moreover, it defines a new notification framework for
IMS based notifications such as CallerID, Incoming Call Message and Chat Invite; not only when a DAE application is
active but also inactive.

The event notification mechanism allows OITFs to receive important UI or information from IPTV service provider or
home network devices such as IG, AG or DLNA RUI compatible devices. CEA 2014 mandates 4 unique notification
models which are dependent on whether the server exists on the internet domain or home network domain. Each of these
domain models have two unique scenarios depending on whether or not a DAE application is running. If a DAE
application is active, the in-session notifications are used to support dynamic UI interaction between the server and the
DAE application without the need to reload the XHTML page. Otherwise, 3rd party event notification should be used to
receive and display a notification message outside of the current user session with a DAE application on the OITF, for
example an event coming from another server, e.g. to receive emergency alerts, or events regarding news, weather, stock
or other information. Generally, 3rd party event notification creates a new DAE application to display notification
information.

IMS event notifications for Caller ID, Messaging and Chatting have different behaviour from general event notification
defined on CEA 2014 because IMS communication service should be accessed by authorized users and devices within
the approval of IPTV service provider. Considering the issue of user’s privacy, the DAE specification not only adopts the
general Event Notification Frameworks from CEA 2014 as defined in section 5.3.1, but also defines a new IMS Event
Notification Framework in section 5.3.2.

5.3.1 Event notification framework based on CEA 2014
An OITF must be capable of displaying various event notifications from both Internet domain and home network domain.
Event notification can be conveyed through active UI interaction’s channel or out of session. As described in the diagram
below, in-session notification is associated with a running DAE application, whereas a 3rd party event notification is
delivered through an independent communication channel. If an OITF receives a 3rd party event after subscribing to a
certain internet URL or the OITF receives a multicasted event notification message, the OITF needs to perform 3rd party
event notification and display its information inside a new DAE application.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 36 (289)

The diagram below describes a general overview of the Event Notification architecture.

Internet Domain
: IPTV Service Provider
: 3rd Party Internet Server

OITF (Remote UI Client)

Home Network Domain
: Application Gateway
: IMS Gateway (Setup Page)

Remote UI Server

Web Server

3rd Party Notification
Handler

Event
Notification

Handler

DAE Application
(XHTML Browser)

3rd Party Notification
Handler

Event
Notification

Handler

Events/notification over
Multicast or HTTP

Events/notification over
XMLHttpRequest or

NotifSocket

local script
binding

User input
Handler

local script
binding

Figure 4: General Event Notification Architecture on OITF and Remote UI Server

In-Session notifications are performed to update partial or whole DAE application UI through the NotifSocket object
and/or the XMLHttpRequest object as defined by CEA 2014 A. NotifSocket object creates a persistent TCP
connection between a DAE application and Remote UI server in order to support burst event notifications. In addition,
DAE application can create an XMLHttpRequest object to make asynchronous HTTP requests to a web server on the
internet domain. This establishes an independent HTTP connection channel to support XML updates between the DAE
application and the Remote UI server.

On the other hand, if the OITF receives an incoming notification outside of an active interaction (i.e. session) with the
server, a 3rd Party Event Notification must be executed to invoke a DAE application to fetch and render the UI content
using the URL contained within the notification message. This allows servers to “broadcast” important messages, such as
Emergency alert messages, to an OITF at anytime, even when the DAE application would currently not be running. This
should be done through a push-method with multicast message for the home network domain. and a pull-method for the
internet case.

The next two subsections describe the requirements for the event mechanisms in more detail.

5.3.1.1 In-session event notification
In-Session notifications can be defined as “Dynamic UI Update.” With this mechanism, a server should be able to send a
notification message during a UI interaction to update the UI dynamically without the need to reload the XHTML-page.
The OITF SHALL support the two following scripting objects for In-session event notification:

 XMLHttpRequest Scripting Object (as defined in section 5.5.2 of [CEA2014A])

 The XMLHttpRequest is an embedded object on the browser and enables scripts to make HTTP request
to a web server without the need to reload the page. It can be used by JavaScript to transfer and manipulate
XML data to and from a web server using HTTP, establishing an independent connection channel between
a web server and DAE applications. Whenever a DAE application needs to update the UI, it sends a
request to the UI server, IPTV service provider or 3rd Party Internet Server, to monitor the change of status
or event. In case an event, the UI server sends an HTTP response to the XMLHttpRequest.

 NotifSocket Scripting Object (as defined in section 5.5.1 of [CEA2014A])

 Even though XMLHttpRequest object has become more widespread on browsers and Internet Portal
servers, it has a difficulty in supporting dynamic UI update on home domain’s devices because it is
required to be invoked by the request of XMLHttpRequest on DAE application side. NotifSocket
creates a persistent TCP connection between DAE application and UI server in order to support burst
event notifications. Whenever the UI server needs to notify the DAE application running on the OITF of a
UI update, it sends any types of update message, such as encoded binary or string, through the
NotifSocket connection. The NotifSocket object allows an UI server to push any event information
through the independent TCP/IP channel at any time.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 37 (289)

5.3.1.2 Out of session event notification
Out of session event notifications are defined as “3rd Party Notification” on the CEA 2014. Since these notifications are
not part of an active remote UI interaction with a Remote UI Server, the OITF must launch a new DAE application to
render the UI content using the URL contained within the notification message.

The OITF SHALL support multicast notifications for 3rd party event notifications for the home network domain and the
internet domain respectively as defined below. Support for polling-based notifications as defined below is OPTIONAL
and support can be indicated through the OITF’s capability description by using element <pollingNotifications> as
defined in section 9.3.14 or the +POLLNOTIF name fragment as defined in section 9.2.

 Multicast Notifications (as defined in section 5.6.1 of [CEA2014A])

 The OITF SHALL support receiving of Multicast Notifications over multicast UDP, with a UPnP event
message format defined by CEA 2014 if the incoming message comes from home network domain. After
interpreting the message, the OITF should create a new notification window with specified
<ruiEventURL>. In order to ensure a reliable transmission of a multicast notification message, a Remote
UI Server shall transmit the same notification message, with the same HTTP SEQ header value 2 or 3
times, where the time between transmissions should be a random time between 0 and 10 seconds.

 Polling-based Notification (as defined in section 5.6.2 of [CEA2014A])

 The OITF SHALL support polling-based 3rd Party notifications from an IPTV Service Provider or a 3rd
Party Internet Server. To this end, the OITF subscribes to certain URIs to display web contents such as
news, weather, stock or other information from Internet side on executing the
subscribeToNotifications(String url, String name, Number period, String type). An
OITF should poll for notifications even when the CE-HTML browser is not active. If a new notification is
received, this MAY be notified to the user in a vendor defined way, including direct rendering on the
display and using a non-intrusive prompt. An OITF should restrict the total number of active notification
subscriptions to about 10.

Note that in Annex B we have defined a subscribeToNotificationsASync method to provide a
way of subscribing to polling-based notifications that is non-blocking.

5.3.2 IMS event notification framework
This section covers the DAE interactions needed to drive the message exchanges on the HNI-IGI interface in the case
where the Service Provider offers an IMS application.

The HNI-IGI framework defines how an OITF interacts with an IMS Gateway (IG) via the HNI-IGI interface ([PROT]
section 5.5.1).

Every message on the HNI-IGI interface SHALL be carried in a HTTP transaction where the OITF sends the HTTP
request and the IG responds to the request. The HNI-IGI In-session framework, in the case of a DAE application, uses the
XMLHttpRequest Script Object, as defined in section 5.5.2 of [CEA2014A] .

There are two message directions on the HNI-IGI interface, corresponding to outgoing and incoming messages from and
to the OITF.

5.3.2.1 HNI-IGI transactions for in-session out-going request messages
This message direction applies to outgoing messages from the OITF on the HNI-IGI interface. The OITF sends a request
and the IG responds to the request. The following figure illustrates the sequences for in-session transactions for outgoing
requests from DAE application to the IG.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 38 (289)

Outgoing SIP Request from OITF to IG

OITF

 DAE
Application

IG ASM

0. Prepare Call-ID
for the SIP dialog

[S1] SIP request
<SIP Request Line>
<SIP Headers>
<RequestMsgBody>

XMLHttpRequest
Script Object

Next out-going SIP requests with the same call-ID may follow as the same sequence from step 1) to step 6.)

7. read
ResponseMsgBody
via responseXML or
responseText

6. getResponseHeader(“X-OITF-
Response-Line”)

[H2]. HTTP response
200 OK
X-OITF-Response-Line: <RespLine >
HTTP Body: <ResponseMsgBody>

[S2]. SIP response
<SIP Response Line>
<SIP Headers>
<ResponseMsgBody>

[H1]. HTTP request
POST <IG_URL>/SIP /HTTP 1.1
X-OITF-Request-Line: <ReqLine >
HTTP Body: <RequestMsgBody>

3. setRequestHeader(“X-OITF-
Request-Line”, ReqLine)

4 send (RequestMsgBody)

5. onreadystateshange
callback

2. .open(POST,
“<IG_URL>/SIP”)

1. new XmlHttpRequest()

Figure 5: HNI-IGI transaction for outgoing SIP requests from a DAE application

0. Prepare the Call-ID for a SIP request. The Call-ID SHALL be generated by the DAE application for an outgoing
SIP request. This Call-ID SHALL be locally unique across all OITFs in a residential network.
NOTE: How uniqueness is achieved is currently not defined.

1. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

2. The DAE application SHALL invoke the open() method to specify the HTTP method and Request-URI for the
request. In this case, the HTTP POST method with the Request-URI of <IG_URL>/SIP SHALL be used as
specified in [PROT].

3. The DAE application SHALL invoke the setRequestHeader() method to specify the required HTTP
headers as specified in [PROT]. This method SHALL be invoked for each required HTTP header. For example,
the X-OITF-Request-Line HTTP header specifies the SIP request line for the SIP request. The Call-ID is
specified in the X-OITF-Call-ID header.

4. The DAE application SHALL invoke the send() method to send the HTTP request. The SIP Message Request
body is specified in a parameter of this method.

5. When the HTTP response is received, the onreadystatechange callback function SHALL be invoked on
the DAE application.

6. The DAE application SHALL invoke the getRequestHeader() method to retrieve each HTTP header. The
SIP Response Line is specified in the X-OITF-Response-Line header.

7. If the readyState property of the XMLHttpRequest object has value 4, the HTTP response body SHALL
be retrieved via the responseXML or responseText properties of the XMLHttpRequest object. The SIP
response body is specified in the HTTP response body.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 39 (289)

5.3.2.2 HNI-IGI transaction for in-session incoming request messages
This message direction applies to incoming messages to the OITF on the HNI-IGI interface which are related to an
existing IMS session. An example of this is a SIP NOTIFY message received from the network in response to a previous
SIP SUBSCRIBE sent from the IG. The OITF sends a HTTP request and the IG responds to the request when it receives
an incoming message from the network related to an existing session. The following figure illustrates the sequences for
in-session transactions for incoming requests from the IG to the DAE application.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 40 (289)

OITF

 DAE
Application

IG ASM

0. Prepare Contact
and Call-ID for the
SIP dialog

In-session incoming SIP request

XMLHttpRequest
Script Object

1. new XMLHttpRequest()

2. .open(POST,
“<IG_URL>/PENDING_IG”)

3. setRequestHeader(X-OITF-
Request-Line, null)

4 send (null)

[S2]. SIP response
<SIP Response Line>
<SIP Headers>
<ResponseMsgBody>

[H2]. HTTP response
200 OK
X-OITF-Request-Line: <ReqLine >
HTTP Body: <RequestMsgBody> 5. onreadystatechange

callback

7. read ResponseMsgBody via
responseXML or responseText

If further in-session incoming SIP request are expected for this call-ID, the same sequence from step 4) to step 11) SHOULD be
followed. This SHALL be done immediately and not wait for a body to be included. In case the DAE application does not need to
receive any further incoming in-session SIP requests, the [H3] HTTP POST in step 11 SHOULD be directed to <IG_URL>/SIP.

6. getResponseHeader(“X-OITF-
Request-Line”)

[S1] SIP request
<SIP Request Line>

* HTTP response is pending
until SIP request or time-out

<SIP Headers>
<RequestMsgBody>

* HTTP response is pending
until SIP request or time-out

8. new XMLHttpRequest()

9. .open(POST,
“<IG_URL>/PENDING_IG”)

10. setRequestHeader(“X-OITF-
Response-Line”, RespLine)

11 send (ResponseMsgBody)

[H3]. HTTP request
POST <IG_URL>/PENDING_IG
/HTTP 1.1
X-OITF-Response-Line: <RespLine>
HTTP Body: <ResponseMsgBody>

[H1]. HTTP request
POST <IG_URL>/PENDING_IG
/HTTP 1.1
X-OITF-Request-Line: null
HTTP Body: <RequestMsgBody>: null

Figure 6: HNI-IGI transaction for in-session incoming SIP request

0. Prepare the Call-ID for this SIP session for which a message is expected. The Call ID SHALL be the same as
the one created initially for this session.

1. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 41 (289)

2. The DAE application SHALL invoke the open() method to specify the HTTP method and the Request-URI
for the request. In this case, the POST method with a Request-URI of <IG URL>/PENDING_IG SHALL be
used as specified in [PROT].

3. The DAE application SHALL invoke the setRequestHeader() method to specify the required HTTP
headers, as specified in [PROT]. This method is invoked for each HTTP header that is required. In this case, the
X-OITF-Request-Line, which specifies the SIP request line for the SIP request, is set to the value null. The
SIP Call-ID is specified in the X-OITF-Call-ID header.

4. The DAE application SHALL invoke the send() method to send the HTTP request. For the HTTP request that
sets up the initial long poll, no X-OITF headers are allowed for the HTTP request to the PENDING_IG Request-
URI.

5. When the HTTP response is received, the specified onreadystatechange() callback function is invoked.

6. The DAE application SHALL invoke the getResponseHeader() method to retrieve each HTTP header. The
SIP Request Line is specified in the X-OITF-Request-Line HTTP header.

7. If the readyState property of the XMLHttpRequest object has value 4, the HTTP response body SHALL
be retrieved via the responseXML or responseText properties of the XMLHttpRequest object. The SIP
response body is specified in the HTTP response body.

8. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

9. The DAE application SHALL invoke the open() method to specify the HTTP method and the Request-URI
for the request. In this case, the POST method with a Request-URI of <IG URL>/PENDING_IG SHALL be
used as specified in [PROT].

10. The DAE application SHALL invoke the setRequestHeader() method to populate each HTTP header as
specified in [PROT]. This method SHALL be invoked for each required HTTP header. For example, the
X-OITF-Response-Line specifies the SIP response line for the SIP response. The Call-ID is specified in the
X-OITF-Call-ID header.

11. The DAE application SHALL invoke the send() method to send the HTTP request. If there is a SIP response
body, it is included as a parameter to the send() method. The SIP response body message is carried in the
HTTP body for the HTTP request to the PENDING_IG Request-URI.

In the case where the OITF does not need to receive any further incoming in-session SIP requests, the [H3] HTTP POST
in step 11 SHALL be directed to the <IG_URL>/SIP Request-URI.

5.3.2.3 HNI-IGI transaction for out of session incoming request messages
This message direction applies to incoming messages on the HNI-IGI interface which are not related to an existing
session. An example of this is a SIP MESSAGE message received from the network, coming e.g. from an IPTV
application or from another user. The following figure illustrates the sequences of out-of-session transactions for in-
coming requests from the IG to OITF.

The first figure describes what happens when the OITF is first turned on.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 42 (289)

DAE app Registration Function
IMS CS

5. HNI_IGI (PENDING_IG, user_default, call_id (null))

1. HNI_IGI (IG, REGISTRATION (user_default, icsi))

3. 200 OK

IG

8. HNI_IGI (IG, REGISTRATION (user_default, icsi(s))

4. 200 OK

2. REGISTER (user_default, ICSI)

OITF

7. subscribeNotification (user_default, icsi(s))

10. 200 OK
11. 200 OK

9. REGISTER (user_default, ICSI)

6. Perform SD&S and start DAE app.

(javascript
)

(native code)

Start Pending_IG
for incoming
new dialog
requests

Application to be notified of
new dialog requests for
default user

Figure 7: What happens when the OITF is first turned on

1. When the OITF is turned on the OITF SHALL send a HNI_IGI IG registration message to register the default
user.

2. The IG Registers the default user in the IMS network.

3. The IMS network returns 200 OK.

4. a 200 OK message SHALL be returned on the HNI_IGI.

5. If there are native IMS applications that may receive unsolicited messages the OITF SHALL send a
PENDING_IG message to the IG, for the default user and with the call_id set to null. The steps to send
PENDING_IG are the same as steps 8-11 from section 5.3.2.2 “HNI-IGI transaction for in-session incoming
request messages”.

6. The OITF performs service selection and discovery and loads the initial DAE page.

7. DAE IMS applications that desires to receive unsolicited notifications SHALL issue a
subscribeNotification() method (as defined in section 7.8).

8. When applicable the OITF SHALL send a HNI_IGI IG registration message to re-register the default user,
including new applications.

9. The IG re-registers the default user in the IMS network.

10. The IMS network returns 200 OK.

11. A 200 OK message SHALL be returned on the HNI_IGI.

The next figure describes what happens when a specific user logs in using the DAE interface.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 43 (289)

Figure 8: User logs in using the DAE interface

1. When the user desires to login the DAE SHALL call the registerUser() method to register the user.

2. The OITF SHALL send a HNI_IGI IG registration message to register the user.

3. The IG Registers the user in the IMS network.

4. The IMS network returns 200 OK.

5. A 200 OK message SHALL be returned on the HNI_IGI.

6. If there are native IMS applications that may receive unsolicited messages the OITF SHALL send a
PENDING_IG message to the IG, for the default user and with the call_id set to null. The steps to send
PENDING_IG are the same as steps 8-11 from section 5.3.2.2 “HNI-IGI transaction for in-session incoming
request messages”.

7. DAE IMS applications for the user that desires to receive unsolicited notifications SHALL issue a
subscribeNotifications() method (as defined in section 7.8).

8. When applicable the OITF SHALL send a HNI_IGI IG registration message to re-register the user, including
new applications.

9. The IG re-registers the default user in the IMS network.

10. The IMS network returns 200 OK.

11. a 200 OK message SHALL be returned on the HNI_IGI.

The next Figure describes what happens when an unsolicited message arrives from the network. The precondition is that
a DAE application is already running and subscribed to the IMS notifications (refer to previous sequence when user logs
in).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 44 (289)

Figure 9: Unsolicited message from the network

1. A SIP message arrives from the network.

2. The IG responds to the PENDING_IG request.

3. The OITF SHALL immediately issue a new PENDING_IG request after receiving a response on a
PENDING_IG request. The steps to send PENDING_IG are the same as steps 8-11 from section 5.3.2.2 “HNI-
IGI transaction for in-session incoming request messages”.

4. The OITF SHALL call the callback function onNotification for the corresponding application. This
includes the IMS message.

5. The OITF MAY respond to the network with a new outgoing message. The steps to send PENDING_IG are the
same as steps 8-11 from section 5.3.2.2 “HNI-IGI transaction for in-session incoming request messages”.

6. If the OITF sends a message the IG SHALL forward it to the network.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 45 (289)

6 Formats
6.1 CE-HTML
An OITF SHALL support the XHTML profile called CE-HTML as specified in section 5.4 of CEA-2014-A
[CEA2014A], with the exceptions as defined in Annex B.

NOTE: the list of default embedded objects and related JavaScript APIs are defined in section 7.

6.2 CE-HTML referenced formats
This section provides more details about formats used by CE-HTML

This section modifies the sections of the CEA-2014 specification which reference externally defined formats. In the
absence of modifications below, those sections SHALL apply.

 JPEG: Support for lossless and hierarchical modes and arithmetic coding of DCT coefficients is OPTIONAL.
The thumbnail feature of [JFIF] is OPTIONAL. OITFs not supporting thumbnails SHALL skip them if present
and continue decoding the rest of the image.

6.3 Media formats
This section describes the main requirements for the format and usage of codecs in media referred to by DAE
applications. This section also describes memory audio.

6.3.1 Media format of A/V media except for audio from memory
This section describes the format and usage of the A/V media codec except for audio from memory.

 Format and usage of video codec SHALL adhere to section 5 of [MEDIA].

 Format and usage of subtitles format SHALL adhere to section 6 of [MEDIA].

 Format and usage of teletext format SHALL adhere to section 7 of [MEDIA].

 Format and usage of audio codec SHALL adhere to section 8 of [MEDIA], except for section 8.1.1.2, 8.1.5 and
8.2.1 which are covered in section 6.3.2.

6.3.2 Media format of A/V media for audio from memory
This section describes the format and usage of the A/V media codec for audio from memory. Usage of corresponding
A/V media object is described in section 7.14 of this document.

For the audio from memory format, HE-AAC SHALL be supported by the OITF and WAVE MAY be supported by the
OITF.

 Format and usage of HE-AAC audio from memory SHALL adhere to section 8.1.1.2 and 8.2.1 of [MEDIA].

 Format and usage of WAVE audio from memory SHALL adhere to section 8.1.5 and 8.2.1 of [MEDIA].

6.3.3 Media transport
Format and usage of media transports referred to by DAE applications SHALL adhere to section 4 of [MEDIA].

6.4 SVG
This section contains extensions and modifications to W3C SVG 1.2 Tiny [SVG Tiny 1.2] and to the CEA-2014
[CEA2014A].

6.4.1 Supporting SVG documents
OITF SHALL support [SVG Tiny 1.2] documents with the extensions to [CEA2014A] described in this subsection.
These extensions SHALL be accomplished by means of the following text:

[Req 5.2.1.a] The following extensions apply:

 A Remote UI Client Capability Description SHALL include the following element in order to convey support
for SVG:
<mime-extensions>image/svg+xml</mime-extensions>

[Req 5.2.2.f] The following extensions apply:

 Referenced content SHALL adhere to the image/svg+xml MIME type.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 46 (289)

[Req. 5.3.a] The following extensions apply:

 If an Accept request header is used, then its value SHALL contain the string “image/svg+xml”.

 If an Accept-Encoding and an Accept request header are used, then the value of the Accept-Encoding
header SHALL contain the string “gzip” and “deflate”.

[Req. 5.4.a] The following extensions apply:

 A Remote UI Client SHALL include a Conforming Dynamic SVG Viewer as defined by [SVG Tiny 1.2] .

The following applies to item 8):

 Compliant image content SHALL include the MIME type image/svg+xml as defined by [SVG Tiny 1.2] .

[Req. 5.10.b] The following extensions apply:

 SVG viewer SHALL support SVG image content which uses logical coordinates greater than the resolution
supported by the <width> and <height> parameters of the Remote UI Client capability.

[Annex G, Table 5] The following extensions apply:

 The type attribute of an <a> element tag SHALL specify the value image/svg+xml if a link to an SVG
document is defined.

 The element tag SHALL allow image of content-type image/svg+xml to be used.

 The <object/> element tag SHALL allow content of content-type image/svg+xml to be used.

If an SVG document contains beyond SVG 1.2 Tiny elements, attributes or properties, these MAY be ignored. If the
SVG document contains video or audio elements, these MAY be ignored.

6.4.2 Supporting DOM access between CE-HTML and SVG
6.4.2.1 Parent CE-HTML access to child SVG
In order to enable DOM accessing from parent CE-HTML [CEA2014A] document to child [SVG Tiny 1.2] document,
the following extensions SHALL be applied to CE-HTML:

 [5.4.a] XHTML Profile (CE-HTML); The following applies to item 3) d):

• The HTMLObjectElement interface, including the contentDocument attribute of this interface,
SHALL be supported for SVG documents. If the contentDocument property of
HTMLObjectElement refers to a [SVG Tiny 1.2] document, then the available methods and properties
for the contentDocument are limited to the common subset of the [SVG Tiny 1.2] uDOM and the
Element interface defined in.[DOM 2 Core].

• Methods blur() and focus() SHALL be supported for SVG documents and SHALL have the same
semantics as specified for interface HTMLInputElement.

 [Annex I, Table 9] The following extensions apply:

add HTMLObjectElement interface with the following properties and functions as defined by [DOM 2 HTML]:
align, border, contentDocument, data, height, hspace, name, tabindex, type, vspace,
width, blur(), focus();

Scripting Interface
(informative)

Properties and Methods
(informative)

Additional Requirements and
Recommendations (in addition

to that defined above)

HTMLObjectElement #HTMLElement

align(*)

border(*)

contentDocument(**)

data

height

hspace(*)

(*) use of this attribute is
deprecated

(**) at least supported for SVG
content

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 47 (289)

name(*)

tabindex

type

vspace(*)

width

blur()(**)

focus()(**)

Table 4: HTMLObjectElement interface

6.4.2.2 Child SVG access to parent CE-HTML
In order to enable DOM access from child [SVG Tiny 1.2] document to parent CE-HTML [CEA2014A] document, the
following extensions SHALL be applied to CE-HTML:

 [5.4.2.a] The following extensions to be added to item 1) Properties - j) readonly String name:

• If a window object is associated with an embedded document, then the name property of the window
SHALL match the name property of the element that generated the embedded document.

 [5.4.2.a] The following extensions to be added to item 1) Properties x):

• x)readonly Element frameElement - Property frameElement SHALL resolve to the embedding
element object or null if there is no such element.

 [Annex I, Table 9] The following extensions apply:

• under window object entry, add read-only property frameElement;

Scripting Interface
(informative)

Properties and Methods
(informative)

Additional Requirements and
Recommendations (in addition to

that defined above)

Window
frameElement(available to
DocumentViews of embedded SVG
documents)
cea2014_protocol_version
cea2014_protocol_subversionNr
document
frames
history
innerHeight
innerWidth
location
id
name
onblur
onfocus
onkeypress
onkeydown
onkeyup
httptimeout(****)
parent
top
maxHeight(****)
maxWidth(****)
topmost(****)
height(****)
width(****)
focus()
setTimeout()
clearTimeout()
setRenderMode()
openURL()(****)
reload()(****)
replace()(****)
requestFocus()(****)
setHttpTimeout()(****)
setTimer()(****)

Additional implementation/authoring
requirements:

The methods and properties SHALL
adhere to [Req.5.4.2.a].

(*) Method download() is only
mandatory for Remote UI Clients
for which <download> is true in
their capability profile.

(**) Method
subscribeToNotifications is only
mandatory for i-Box clients.

(***) Property XMLHttpRequest is
only mandatory for i-Box clients.

(****) CEA-2027-A specific method
that may not be supported as per
Annex B of this DAE specification.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 48 (289)

clearTimer()(****)
getFrame()(****)
escapeBeyondTopmost()(****)
exitUnit()(****)
download()(*)
subscribeToNotifications()(**)
XMLHttpRequest(***)

Table 5: Window interface

Add the DocumentView interface (defined in Table 6) to uDOM defined in [SVG Tiny 1.2]. It is a subset to DOM
Level 2 Views[DOM 2 Views]. The DocumentView interface provides the access to innermost Window object so that
child document can access to parent document. It has defaultView property described as follows:

interface DocumentView

{

 readonly Window defaultView;

}

defaultView resolves to the innermost Window
object into which the Document is presented.

If the window object is CE-HTML based, then the
available methods and properties for the
defaultView.frameElement are limited to the
common subset of the [SVG Tiny 1.2] uDOM and
DOM Core L2 Element interface.

Table 6: DocumentView interface to be added to uDOM

SVGDocument interface also changes to inherit the DocumentView interface.

6.4.2.3 Parent SVG access to child CE-HTML
In order to enable DOM accessing from parent [SVG Tiny 1.2] document to child CE-HTML document, the following
extensions SHALL be applied to [SVG Tiny 1.2] :

 Add SVGForeignElement interface to uDOM defined in [SVG Tiny 1.2]. This interface represents the
‘foreignObject’ element in the SVG document.

interface SVGForeignObjectElement

{

 Document contentDocument;

}

The document this object contains, if there is any
and it is available, or null otherwise.

If this document is CE-HTML based, then the
available methods and properties for the document
are limited to the common subset of the [SVG Tiny
1.2] uDOM and DOM Core L2 Element interface.

Table 7: SVGForeignObjectElement interface to be added to uDOM

6.4.2.4 Child CE-HTML access to parent SVG
In order to enable DOM accessing from child CE-HTML [CEA2014A] document to parent [SVG Tiny 1.2] document,
the following extensions SHALL be applied to [CEA2014A]:

 [5.4.a] XHTML Profile (CE-HTML); The following to be added to item 3) DOM2 - f)

• f) DOM level 2 Views , with at least providing support property defaultView which SHALL resolve
to the innermost Window scripting object into which the Document is presented. If Window object is
[SVG Tiny 1.2] based, then the available methods and properties for the
defaultView.frameElement are limited to the common subset of the [SVG Tiny 1.2] uDOM and
[DOM 2 Core] Element interface.

 [Annex I, Table 9] The following extensions apply:

• under Document interface entry, add read-only property defaultView;

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 49 (289)

Scripting Interface
(informative)

Properties and Methods
(informative)

Additional Requirements and
Recommendations (in addition to that

defined above)

Document
#Node
defaultView
doctype
documentElement
implementation
createAttribute()
createAttributeNS()
createCDATASection()
createComment()
createDocumentFragment()
createElement()
createElementNS(),
createEntityReference()
createProcessingInstruct
ion()
createTextNode()
getElementById()
getElementsByTagName()
getElementsByTagNameNS()
importNode()

Additional implementation/authoring
guideline:

CE-HTML clients MAY not provide full
support for XML namespaces and
processing instructions, hence methods
getElementByTagNameNS(),
createAttributeNS(),
createElementNS(),and
createProcessingInstruction() MAY
not be supported.

Table 8: Document interface

In order to support access from [SVG Tiny 1.2] document to the CE-HTML document, the following extensions SHALL
be applied to [SVG Tiny 1.2]:

 Add Window interface to the uDOM defined in [SVG Tiny 1.2]. Window interface is subset to the Window object
defined in W3C WebAPI activity [Window Object]. The Window interface provides the access to other
documents in a compound document by reference.

interface Window

{

 readonly String name;

 readonly Element frameElement;

}

If a Window object is associated with an
embedded document, then the name property of
the window SHALL match the name property of the
element that generated the embedded document.

frameElement property contains reference to
embedded element or null if there is no such
element.

Table 9: Window interface to be added to uDOM

6.4.2.5 Event propagation
When an event occurs on any element in child the embedded document, event propagation typically does not run beyond
the embedded parent document’s boundaries. However, events will still be dispatched to other applications as defined in
section 7.2.6.

No event listener in parent catches any event in child document. If user pushes key button when an [SVG Tiny 1.2]
element is focused, then KeyEvent occurs on the focused [SVG Tiny 1.2] element and it typically does not propagate to
the CE-HTML document.

To accomplish setting and moving focus through [SVG Tiny 1.2] and CE-HTML document, following extension SHALL
be applied.

 [Req. 5.4.1.m] The following extensions apply:

• If a HTML document includes <object> elements whose type attribute value is image/svg+xml, then the
Remote UI Client SHALL (1) offer a means to set focus to any SVG element type for which an event
listener SHALL be registered, and (2) generate appropriate DOM 2 focus events accordingly.

 [Req. 5.4.1.n] The following extensions apply:

• If a HTML document includes <object> elements whose type attribute value is image/svg+xml, then the
Remote UI Client SHALL (1) offer a means to move focus away from any SVG element type for which
an event listener SHALL be registered, and (2) generate appropriate DOM 2 focus events accordingly.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 50 (289)

In order to pass an event that occurred in the CE-HTML document to a script in [SVG Tiny 1.2], the following
extensions SHALL be applied to [SVG Tiny 1.2] :

 Add DocumentEvent interface to uDOM defined in [SVG Tiny 1.2]. It is same as DocumentEvent in DOM
Level 2 Events. SVGDocument interface also changes to inherit the DocumentEvent interface.

 Add dispatchEvent method to EventTarget defined in [SVG Tiny 1.2]

6.4.2.5.1 DocumentEvent
The DocumentEvent interface provides a mechanism by which the user can create an Event of a type supported by the
implementation.

6.4.2.5.1.1 Methods

Event createEvent(DOMString eventType)

Description Create a specified event. If specified eventType is supported, newly created
Event object is returned. Otherwise, null is returned.

Arguments eventType The type of Event interface to be created.

6.4.2.5.2 EventTarget
6.4.2.5.2.1 Methods

Boolean dispatchEvent(Event evt)

Description This method allows the dispatch of events into the implementations event model.
The return value of dispatchEvent indicates whether any of the listeners which
handled the event called preventDefault. If preventDefault was called the
value is false, else the value is true.

Arguments Evt Specifies the event type, behavior, and
contextual information to be used in
processing the event.

NOTE: The following methods are described in the uDOM defined in [SVG Tiny 1.2]:

void addEventListener(String type, EventListener listener, Boolean useCapture)

void removeEventListener(String type, EventListener listener, Boolean useCapture)

void addEventListenerNS(String namespaceURI, String type, EventListener listener,

 Boolean useCapture, DOMObject evtGroup)

void removeEventListenerNS(String namespaceURI, String type,

 EventListener listener, Boolean useCapture,

 DOMObject evtGroup)

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 51 (289)

6.4.3 Attention to DAE application developers
6.4.3.1 Script APIs defined in DAE
The use of any script APIs defined in the DAE specification in script code inside an SVG document is not defined. The
script code in [SVG Tiny 1.2] document SHALL be able to call functions on DOM nodes in [CEA2014A] document
and vice versa. The present document does not define how to include CE-HTML embedded objects directly in [SVG
Tiny 1.2] documents.

6.4.3.2 Codec and connection supporting in SVG
DAE applications SHALL NOT rely upon codec support for the use of audio and video elements from [SVG Tiny 1.2].

DAE applications SHALL NOT rely upon support for use of Connection from [SVG Tiny 1.2].

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 52 (289)

7 APIs
7.1 Object factory API
This section defines the methods to check and create an instance of the DAE defined embedded objects within
JavaScript.

The OITF SHALL support a globally accessible object of type “OipfObjectFactory” as a static property
"oipfObjectFactory" of the Window interface with the API as defined in this section. The object factory SHALL
ensure that the referenced objects are correctly set up. This is an alternative to instantiating embedded objects (or plug-
ins) outside of JavaScript.

The factory object can be accessed as a property of the window object (i.e. window.oipfObjectFactory or
oipfObjectFactory).

7.1.1 Methods
Boolean isObjectSupported(String mimeType)

Description This method SHALL return true if and only if an object of the specified type is supported
by the OITF. The method SHALL return false if the MIME type passed as a parameter is
not supported by the client.

Arguments mimeType The mimeType may have any of the MIME types defined in
tables 1 to 4 of [MEDIA] or any of the DAE defined mime types
listed below.

DAE MIME Type

application/notifsocket

application/oipfApplicationManager

application/oipfCapabilities

application/oipfCodManager

application/oipfCommunicationServices

application/oipfConfiguration

application/oipfDownloadManager

application/oipfDownloadTrigger

application/oipfDrmAgent

application/oipfGatewayInfo

application/oipfMDTF

application/oipfParentalControlManager

application/oipfRecordingScheduler

application/oipfRemoteManagement

application/oipfSearchManager

application/oipfStatusView

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 53 (289)

video/broadcast

7.1.1.1 Visual objects
The methods in this section all return HTMLObjectElement objects which can be inserted in the DOM tree. All objects
in section 7 which have a visual representation on the screen can be created using methods in this section. Only for
objects defined in section 7, that are supported by the device (i.e. as indicated through the client capability description), a
corresponding method name to instantiate the object through the OipfObjectFactory class can be assumed to be
present on the oipfObjectFactory object. For any other object, a corresponding method name cannot be assumed to
be present.

HTMLObjectElement createVideoBroadcastObject()

HTMLObjectElement createVideoMpegObject()

HTMLObjectElement createStatusViewObject()

Description If the object type is supported, each of these methods shall return an instance of the
corresponding embedded object.

Since objects do not claim scarce resources when they are instantiated,
instantiation shall never fail if the object type is supported. If the method name to
create the object is not supported, the OITF SHALL throw an error with the
error.name set to the value "TypeError".

If the object type is supported, the method shall return an HTMLObjectElement
equivalent to the specified object. The value of the type attribute of the
HTMLObjectElement SHALL match the mimetype of the instantiated object, for
example "application/oipfVideoBroadcast" in case of method
oipfObjectFactory.createVideoBroadcastObject().

7.1.1.2 Non-Visual objects
The methods in this section all return JavaScript objects which implement the interfaces of their corresponding objects.
They can not be inserted in the DOM tree. All objects in chapter 7 which do *not* have a visual representation on the
screen can be created using methods in this section. Only for objects defined in chapter 7, that are supported by the
device (i.e. as indicated through the client capability description), a corresponding method name to instantiate the object
through the OipfObjectFactory class can be assumed to be present on the oipfObjectFactory object. For any
other object, a corresponding method name cannot be assumed to be present.

Object createApplicationManagerObject()

Object createCapabilitiesObject()

Object createCodManagerObject()

Object createConfigurationObject()

Object createDownloadManagerObject()

Object createDownloadTriggerObject()

Object createDrmAgentObject()

Object createGatewayInfoObject()

Object createIMSObject()

Object createMDTFObject()

Object createNotifSocketObject()

Object createParentalControlManagerObject()

Object createRecordingSchedulerObject()

Object createRemoteManagementObject()

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 54 (289)

Object createSearchManagerObject()

Description If the object type is supported, each of these methods SHALL return an instance of
the corresponding embedded object. This may be a new instance or existing
instance. For example, the object will likely be a global singleton object and calls to
this method may return the same instance.

Since objects do not claim scarce resources when they are instantiated,
instantiation SHALL never fail if the object type is supported. If the method name to
create the object is not supported, the OITF SHALL throw an error with name
property set to the value "TypeError".

If the object is supported, the method SHALL return a JavaScript Object which
implements the interface for the specified object.

7.1.2 Examples
This section provides examples of the usage of the methods.

The first example shows how to query whether an instance of the A/V Control object for a specified MIME type can be
created without the application having to attempt to instantiate the object.

var videoPlayer;
if (window.oipfObjectFactory.isObjectSupported(“video/mpeg”)) {
 videoPlayer = window.oipfObjectFactory.createVideoMpegObject();
 // append object to document
 document.getElementById(‘playerDiv’).appendChild(videoPlayer);
 videoPlayer.data = “rtsp://server/barker_channel”;
}

If the OITF does not support the created object the OITF SHALL throw an error with the error.name set to the value
"TypeError". The example below shows how this can be used by applications:

try {
 configuration = window.oipfObjectFactory.createConfigurationObject();
}
catch (error) {
 alert("application/oipfConfiguration object could not be created - error name: " +
error.name + " - error message: " + error.message);
}

7.2 Applications Management APIs
An OITF providing DAE application capability SHALL implement the behaviour of the classes defined in this section.

7.2.1 The application/oipfApplicationManager embedded object
An OITF SHALL support a non-visual embedded object of type “application/oipfApplicationManager”, with
the following JavaScript API, to enable applications to access the privileged functionality related to application lifecycle
and management that is provided by the application model defined in this section.

If one of the methods on the application/oipfApplicationManager is called by a webpage that is not a
privileged DAE application, the OITF SHALL throw an error as defined in section 10.1.1.

7.2.1.1 Properties

function onLowMemory

The function that is called when the OITF is running low on available memory for running DAE
applications. The exact criteria when to generate such an event is implementation specific.

function onApplicationLoaded(Application appl)

The function that is called immediately prior to a load event being generated in the affected
application. The specified function is called with one argument appl, which provides a reference to the

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 55 (289)

affected application.

function onApplicationUnloaded(Application appl)

The function that is called immediately prior to an unload event being generated in the affected
application. The specified function is called with one argument appl, which provides a reference to the
affected application.

7.2.1.2 Methods

Integer getApplicationVisualizationMode()

Description Returns the current mode used by the OITF to visualize applications, whereby a return
value:

1 corresponds to the application visualization mode as defined by bullet 1) of
section 4.4.6, i.e. multiple applications visible simultaneously with DAE
applications managing their own size, position and visibility

2 corresponds to the application visualization mode as defined by bullet 2) of
section 4.4.6, i.e. multiple applications visible simultaneously with OITF
managing the size, position, visibility of applications

3 corresponds to the application visualization mode as defined by bullet 3) of
section 4.4.6, i.e. only a single application visible at any time.

Application getOwnerApplication(Document document)

Description Get the application that the specified document is part of. If the document is not part of
an application, or the calling application does not have permission to access that
application, this method will return null.

Arguments document The document for which the Application object should be
obtained.

ApplicationCollection getChildApplications(Application application)

Description Get the applications that are children of the specified application.

Arguments application The application whose children should be returned.

void gc()

Description Provide a hint to the execution environment that a garbage collection cycle should be
initiated. The OITF is not required to act upon this hint.

function onApplicationLoadError(Application appl)

The function that is called when the OITF fails to load the file containing the initial HTML document of
an application (e.g. due to an HTTP 404 error, an HTTP timeout, being unable to load the file from a
DSM-CC object carousel or due to the file not being either an HTML file). All properties of the
Application object referred to by appl SHALL have the value undefined and calling any methods

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 56 (289)

on that object SHALL fail.

7.2.1.3 Events
For the intrinsic events “onLowMemory”, “onApplicationLoaded”, and “onApplicationUnloaded” a
corresponding DOM level 2 event SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onLowMemory LowMemory Bubbles: No

Cancelable: No

Context Info: None

onApplicationLoaded ApplicationLoaded Bubbles: No

Cancelable: No

Context Info: appl

onApplicationUnloaded ApplicationUnloaded Bubbles: No

Cancelable: No

Context Info: appl

onApplicationLoadError ApplicationLoadError Bubbles: No

Cancelable: No

Context Info: appl

NOTE: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving the events listed above during the bubbling or the capturing phase. Applications that use
DOM 2 event handlers SHALL call the addEventListener() method on the
application/oipfApplicationManager object. The third parameter of addEventListener, i.e.
“useCapture”, will be ignored.

7.2.2 The Application class
The Application class is used to implement the characteristics of a DAE application.

If the document of an application is modified (or even replaced entirely), the Application object SHALL be retained.
This means that the permission set granted when the application is created applies to all “edits” of the document or other
pages in the application, until the application is destroyed.

7.2.2.1 Properties

readonly Boolean visible

true if the application is visible, false otherwise. The value of this property is not affected by the
application's Z-index or position relative to other applications. Only calls to the show() and hide()
methods will affect its value.

readonly Boolean active

true if the application is in the list of currently active applications, false otherwise (as defined in
section 4.3.8).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 57 (289)

readonly StringCollection permissions

StringCollection object containing the names of the permissions granted to this application.

readonly Boolean isPrimaryReceiver

true if the application receives cross application events before any other application, false otherwise.

readonly Window window

A strict subset of the DOM Window object representing the application. No symbols from the Window
object are accessible through this property except the following:

 void postMessage(any message, String targetOrigin)

readonly ApplicationPrivateData privateData

Access the current application’s private data object.

If the application accessing the private property is not the current application, the OITF SHALL throw
an error with the message property set to the value "SecurityError".

function onApplicationActivated

function onApplicationDeactivated

function onApplicationShown

function onApplicationHidden

function onApplicationPrimaryReceiver

function onApplicationNotPrimaryReceiver

function onApplicationTopmost

function onApplicationNotTopmost

function onApplicationDestroyRequest

function onKeyPress

function onKeyUp

function onKeyDown

Each of these event handlers represents a DOM 0 event handler that corresponds to one of the events
listed in sections 7.2.1.3 and 7.2.6.

7.2.2.2 Methods

void show()

Description If the application visualization mode as defined by method
getApplicationVisualizationMode() in section 7.2.1.2, is:

1 : Make the application visible.

2 : Make the application visible. Calling this method from the application itself may
have no effect.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 58 (289)

3 : Request to make the application visible.

This method only affects the visibility of an application. In the case where more than
one application is visible, calls to this method will not affect the z-index of the
application with respect to any other visible applications.

void hide()

Description If the application visualization mode as defined by method
getApplicationVisualizationMode() in section 7.2.1.2, is:

1 : Make the application invisible.

2 : Make the application invisible. Calling this method from the application itself may
have no effect.

3 : Request to make the application invisible.

Calling this method has no effect on the lifecycle of the application.

Note: Broadcast independent applications should not call this method. Doing so may
result in only the background being visible to the user

void activateInput(Boolean gainFocus)

Description Move the application to the front of the active applications list. If the application has
been hidden using Application.hide(), this method does not cause the
application to be shown.

If the application visualization mode as defined by method
getApplicationVisualizationMode() in section 7.2.1.2, is:

1 : The application’s Window object SHALL be moved to the top of the stack of visible
applications. In addition, the application’s Window object SHALL gain input focus if
argument gainFocus has value true.

2 : The application’s Window object SHALL be moved to the top of the stack of visible
applications. In addition, the application’s Window object SHALL gain input focus if
argument gainFocus has value true. Calling this method from the application itself
MAY have no effect.

3 : Request to make the application’s Window object visible. Once visible, the
application SHALL be given input focus, irrespective of the value for argument
gainFocus.

void deactivateInput()

Description Remove the application from the active applications list. This has no effect on the
lifecycle of the application and MAY have no effect on the resources it uses.
Applications which are not active will receive no cross-application events, unless their
Application object is the target of the event (as for the events defined in section
7.2.6). Applications may still be manipulated via their Application object or their
DOM tree.

Application createApplication(String uri, Boolean createChild)

Description Create a new application and add it to the application tree. Calling this method does
not automatically show the newly-created application.

This call is asynchronous and may return before the new application is fully loaded.
An ApplicationLoaded event will be targeted at the Application object when the

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 59 (289)

new application has fully loaded.

If the application cannot be created, this method SHALL return null.

uri The URI of the first page of the application to be created. Arguments

createChild Flag indicating whether the new application is a child of the current
application. A value of true indicates that the new application
should be a child of the current application; a value of false
indicates that it should be a sibling.

void destroyApplication()

Description Terminate the application, detach it from the application tree, and make any
resources used available to other applications. When an application is terminated,
any child applications shall also be terminated.

7.2.3 The ApplicationCollection class
The ApplicationCollection class represents a collection of Application objects. Next to the properties and
methods defined below an ApplicationCollection object SHALL support the array notation to access the
Application objects in this collection

7.2.3.1 Properties

readonly Integer length

The number of items in the collection.

7.2.3.2 Methods

Application item(Integer index)

Description Return the item at position index in the collection, or undefined if no item is present
at that position.

Arguments index The index of the application to be returned.

7.2.4 The ApplicationPrivateData class
7.2.4.1 Properties

readonly Keyset keyset

The object representing the user input events sent to the DAE application.

7.2.4.2 Methods

Integer getFreeMem()

Description Let application developer query information about the current memory available to the
application. This is used to help during application development to find application
memory leaks and possibly allow an application to make decisions related to its
caching strategy (e.g. for images).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 60 (289)

Returns the available memory to the application or -1 if the information is not available.

For example:
debug("[APP] free mem = " +
appman.getOwnerApplication(window.document).privateData.getFreeMem() + "\n");

7.2.5 The Keyset class
The Keyset object permits applications to define which key events they request to receive. There are two means of
defining this. Common key events are represented by constants defined in this class which are combined in a bit-wise
mask to identify a set of key events. Less common key events are not included in one of the defined constants and form
part of an array.

The supported key events indicated through the capability mechanism in section 9.3 SHALL be the same as the
maximum set of key events available to the browser as indicated through this object

The default set of key events available to broadcast-related applications shall be none. The default set of key events
available to broadcast-independent or service provider related applications which do not call Keyset.setValue
SHALL be all those indicated by the constants in this class which are supported by the OITF excluding those indicated
by OTHER.

7.2.5.1 Constants

Constant
name

Numeric
Value Use

RED 0x1 Used to identify the VK_RED key event.

GREEN 0x2 Used to identify the VK_GREEN key event.

YELLOW 0x4 Used to identify the VK_YELLOW key event.

BLUE 0x8 Used to identify the VK_BLUE key event.

NAVIGATION 0x10 Used to identify the VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT,
VK_ENTER and VK_BACK key events.

VCR 0x20 Used to identify the VK_PLAY, VK_PAUSE, VK_STOP, VK_NEXT,
VK_PREV, VK_FAST_FWD, VK_REWIND, VK_PLAY_PAUSE key events.

SCROLL 0x40 Used to identify the VK_PAGE_UP and VK_PAGE_DOWN key events.

INFO 0x80 Used to identify the VK_INFO key event.

NUMERIC 0x100 Used to identify the number events, 0 to 9.

ALPHA 0x200 Used to identify all alphabetic events.

OTHER 0x400 Used to indicate key events not included in one of the other constants
in this class.

7.2.5.2 Properties

readonly Integer value

The value of the keyset which this DAE application will receive.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 61 (289)

readonly Integer otherKeys[]

If the OTHER bit in the value property is set then this indicates those key events which are available
to the browser which are not included in one of the constants defined in this class, If the OTHER bit in
the value property is not set then this property is meaningless.

readonly Integer maximumValue

In combination with maximumOtherKeys, this indicates the maximum set of key events which are
available to the browser. When a bit in this maximumValue has value 0, the corresponding key events
are never available to the browser.

readonly Integer maximumOtherKeys[]

If the OTHER bit in the maximumValue property is set then, in combination with maximumValue, this
indicates the maximum set of key events which are available to the browser. For key events which are
not included in one of the constants defined in this class, if they are not listed in this array then they are
never available to the browser. If the OTHER bit in the value property is not set then this property is
meaningless.

7.2.5.3 Methods

Integer setValue(Integer value, Integer otherKeys[])

Description Sets the value of the keyset which this DAE application requests to receive. Where
more than one DAE application is running, the events delivered to the browser
SHALL be the union of the events requested by all running DAE applications. Under
these circumstances, applications may receive events which they have not
requested to receive.

The return value indicates which keys will be delivered to this DAE application
encoded as bit-wise mask of the constants defined in this class.

value The value is a number which is a bit-wise mask of the constants
defined in this class. For example;

myKeyset = myApplication.privateData.keyset;

myKeyset.setValue(0x00000013);
myKeyset.setValue(myKeyset.INFO | myKeyset.NUMERIC);

Arguments

otherkeys This parameter is optional. If the value parameter has the OTHER
bit set then it is used to indicate the key events that the application
wishes to receive which are not represented by constants defined in
this class.

7.2.6 New DOM events for application support
New events have been created that are raised on the Application objects in the application tree. These are normal
events, not cross-application events, and are used to indicate changes in the state of an application.

Event Description

ApplicationActivated Issued when an application focus change occurs to inform the
recipient of the event that the application is now focussed.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 62 (289)

Event Description

ApplicationDeactivated Issued when an application focus change occurs to inform the
recipient of the event that the application is now no longer
focussed.

ApplicationShown Issued when an application has become visible.

ApplicationHidden Issued when an application has become hidden.

ApplicationPrimaryReceiver This event is issued to indicate that the target is now at the front
of the active application list.

ApplicationNotPrimaryReceiver This event is issued to indicate that the target is no longer at the
front of the active application list.

ApplicationTopmost This event is issued to indicate that the target is now the topmost
(i.e. it has the highest Z-index and is not obscured by any other
visible applications, for OITFs where multiple applications are
visible simultaneously.

ApplicationNotTopmost This event is issued to indicate that the target is no longer at the
topmost application. For OITFs where only one application is
visible at a time, this event indicates that the application is no
longer visible to the user.

ApplicationDestroyRequest This event is issued to indicate that the target application is
about to be terminated. It is not issued when an application calls
destroyApplication() method for itself (i.e. to exit itself).

Non-responsive applications SHOULD be forcibly terminated by
the OITF, including the case where listeners for
ApplicationDestroyRequest events do not return promptly. The
determination of when an application is "non-responsive" is
terminal-specific.

If an application does not register a listener for this event and
there is a need for the system to terminate the application, then
the application SHALL be terminated immediately.

Table 10: New DOM events for application support

These events do not bubble and cannot be cancelled. Each of these events has a corresponding DOM 0 event handler
property on the Application object.

7.2.7 Examples (informative)
The examples below illustrate some aspects of the application model.

7.2.7.1 Locating the Application object
The ApplicationManager class provides the getOwnerApplication() method, which returns the document's
owning application node:

// Assumes that the application/oipfApplicationManager object has the ID
// “applicationmanager”
Var appMgr = document.getElementById(“applicationmanager”);
var self = appMgr.getOwnerApplication(Window.document);

All other application functionality is available from this object.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 63 (289)

7.2.7.2 Creating a new application
Creating a new application is a simple matter of creating a new Application object.

// Assumes that the application/oipfApplicationManager object has the ID
// “applicationmanager”
Var appMgr = document.getElementById(“applicationmanager”);
var self = appMgr.getOwnerApplication(Window.document);
var child = self.createApplication(url_of_application, true);

A typical requirement on an application is to only become visible once it has fully loaded. To do this, it can take
advantage of load events. Here is an example from a clock application, which wants to load an image to become the
background of the clock, upon which it can write the text of the clock. This example makes use of the additional window
methods resizeTo(), moveTo() and property ‘screen’, which are only available in application visualization mode 1,
as defined in section 4.4.6.

<script>
function loaded() {

 var screen = document.defaultView.screen;
 var clock = document.getElementById('clock');
 window.resizeTo(clock.width, clock.height);

 // position in bottom left
 window.moveTo(clock.width, screen.availHeight - clock.height);

 setup_clock(clock.width, clock.height);

 // Assumes that the application/oipfApplicationManager object has the ID
 // “applicationmanager”
 Var appMgr = document.getElementById(“applicationmanager”);
 var self = appMgr.getOwnerApplication(Window.document);
 self.show();
}
</script>

<style> * { margin: 0cm } </style>

<body onload="loaded()">
 <img id="clock" src="clockbackground.png" style="position: absolute; top: 0px;
left=0px">
</body>

7.3 Configuration and setting APIs
This section defines the interface to configuration and user settings information. Hardware configuration of the OITF is
managed via an instance of the LocalSystem object. This provides access to hardware information and provides an
entry point to configure the outputs and network interfaces of the OIF. Settings relating to the user interface and
behaviour of the platform software are managed via an instance of the Configuration object.

This section is subject to security control, (see section 10.1.3.7) and only applies if <configurationChanges> has
value true.

7.3.1 The application/oipfConfiguration embedded object
The OITF SHALL implement the “application/oipfConfiguration” object as defined below. This object
provides an interface to the configuration and user settings facilities within the OITF.

7.3.1.1 Properties

readonly Configuration configuration

Accesses the configuration object that sets defaults and shows system settings.

readonly LocalSystem localSystem

Accesses the object representing the platform hardware.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 64 (289)

function onIpAddressChange(NetworkInterface item, String ipAddress)

The function that is called when the IP address of a network interface has changed. The specified
function is called with two arguments item and ipAddress. The ipAddress may have the value
undefined if a previously assigned address has been lost.

7.3.1.2 Events
For the intrinsic event “onIpAddressChange”, a corresponding DOM level 2 event SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onIpAddressChange IpAddressChange Bubbles: No

Cancelable: No

Context Info: item, ipAddress

NOTE: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving an IpAddressChange event during the bubbling or the capturing phase. Applications
that use DOM 2 event handlers SHALL call the addEventListener() method on the
application/oipfConfiguration object. The third parameter of addEventListener, i.e. “useCapture”,
will be ignored.

7.3.2 The Configuration class
The Configuration object allows configuration items within the system to be read and modified. This includes
settings such as audio and subtitle languages, display aspect ratios and other similar settings. Unlike the LocalSystem
object, this is concerned with software- and application-related settings rather than hardware configuration and control.

The property isPINEntryLocked and the methods setParentalControlPIN,
unlockWithParentalControlPIN, verifyParentalControlPIN, setBlockUnrated and
getBlockUnrated formerly found in this class are now found in the
application/oipfParentalControlManager embedded object - see section 7.9.1.

The methods setParentalControlPINEnable and getParentalControlPINEnable formerly found in this
class have been removed.

7.3.2.1 Properties

String preferredAudioLanguage

A comma-separated set of languages to be used for audio playback, in order of preference.

Each language SHALL be indicated by its ISO 639.2 language code as defined in [ISO 639.2].

String preferredSubtitleLanguage

A comma-separated set of languages to be used for subtitle playback, in order of preference.

Each language SHALL be indicated by its ISO 639.2 language code as defined in [ISO 639.2].

String preferredUILanguage

A comma-separated set of languages to be used for the user interface of a service, in order of
preference.

Each language SHALL be indicated by its ISO 639.2 language code as defined in [ISO 639.2].

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 65 (289)

If present, the HTTP Accept-language header shall contain the same languages as the
preferredUILanguage property with the same order of preference. NOTE: The order of preference in
the Accept-language header is indicated using the quality factor.

String countryId

An ISO-3166 three character country code identifying the country in which the receiver is deployed.

Integer regionId

An integer indicating the time zone within a country in which the receiver is deployed. A value of 0
SHALL represent the eastern-most time zone in the country, a value of 1 SHALL represent the next
time zone to the west, and so on.

Valid values are in the range 0 – 60.

Integer pvrPolicy

The policy dictates what mechanism the system should use when storage space is exceeded.

Valid values are shown in the table below.

Value Description

0 Indicates a recording management policy where no recordings are to
be deleted.

1 Indicates a recording management policy where only watched
recordings MAY be deleted.

2 Indicates a recording management policy where only recordings
older than the specified threshold (given by the pvrSaveDays and
pvrSaveEpisodes properties) MAY be deleted.

Integer pvrSaveEpisodes

When the pvrPolicy property is set to the value 2, this property indicates the minimum number of
episodes that SHALL be saved for series-link recordings.

Integer pvrSaveDays

When the pvrPolicy property is set to the value 2, this property indicates the minimum save time (in
days) for individual recordings. Only recordings older than the save time MAY be deleted.

Integer pvrStartPadding

The default padding (measured in seconds) to be added at the start of a recording.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 66 (289)

Integer pvrEndPadding

The default padding (measured in seconds) to be added at the end of a recording.

7.3.2.2 Methods

String getText(String key)

Description Get the system text string that has been set for the specified key.

Arguments key A key identifying the system text string to be retrieved.

void setText(String key, String value)

Description Set the system text string that has been set for the specified key. System text strings
are used for automatically-generated messages in certain cases, e.g. parental control
messages.

Arguments key The key for the text string to be set. Valid keys are:

Key Description

no_title Text string used as the title for
programmes and channels where no
guide information is available.

Defaults to “No information”

no_synopsis Text string used as the synopsis for
programmes where no guide information
is available.

Defaults to “No further information
available”

manual_recording Text string used to identify a manual
recording.

Defaults to “Manual Recording”

 value The new value for the system text string.

7.3.3 The LocalSystem class
The LocalSystem object allows hardware settings related to the local device to be read and modified.

7.3.3.1 Properties

readonly String deviceID

Private OITF Identifier. Unique identifier SHALL take the value undefined except when accessed by
applications meeting either of the following criteria:

• The application is signalled in an SD&S service provider discovery record with an application usage
of urn:oipf:cs:ApplicationUsageCS:2009:hni-igi where the SD&S service provider
discovery record was obtained by the OITF through the procedure defined in section 5.3.1.2 of

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 67 (289)

[PROT].

• The URL of the application was discovered directly through the procedure defined in section 5.3.1.2
of [PROT].

In these two cases, it SHALL take the same value as defined for the DHCP client identifier in DHCP
option 61 in section 12.1.1.1 of [PROT].

readonly Boolean systemReady

Indicates whether the system has finished initialising. A value of true indicates that the system is
ready.

readonly String vendorName

String identifying the vendor name of the device.

readonly String modelName

String identifying the model name of the device.

readonly String familyName

String identifying the name of the family that the device belongs to. Devices in a family differ only by
details that do not impact the behaviour of the OITF aspect of the device, e.g. screen size, remote
control, number of HDMI ports, size of hard disc. Family names are allocated by the vendor and the
combination of vendorName and familyName should uniquely identify a family of devices. Different
vendors may use the same familyName, although they are recommended to use conventions that avoid
this.

readonly String softwareVersion

String identifying the version number of the platform firmware.

readonly String hardwareVersion

String identifying the version number of the platform hardware.

readonly String serialNumber

String containing the serial number of the platform hardware.

readonly Boolean pvrEnabled

Flag indicating whether the platform has PVR capability (local PVR).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 68 (289)

Boolean standbyState

Get or set the standby state of the receiver. A value of true indicates that the receiver is in standby
mode.

Integer volume

Get or set the overall system volume. Valid values for this property are in the range 0 - 100. The OITF
SHALL store this setting persistently.

Boolean mute

Get or set the mute status of the default audio output(s). A value of true indicates that the default
output(s) are currently muted.

readonly AVOutputCollection outputs

A collection of AVOutput objects representing the audio and video outputs of the platform.
Applications MAY use these objects to configure and control the available outputs.

readonly NetworkInterfaceCollection networkInterfaces

A collection of NetworkInterface objects representing the available network interfaces.

readonly Integer pvrSupport

Flag indicating the type of PVR support used by the application. This property may take zero or more of
the following values:

Value Description

0 PVR functionality is not supported. This is the default value if <recording> as
specified in section 9.3.3 has value false.

1 PVR functionality is supported in the OITF. This is the default value if <recording>
as specified in section 9.3.3 has value true.

Values are stored as a bitfield.

readonly Boolean ciplusEnabled

Flag indicating whether the platform has CI+ capability.

readonly Integer releaseVersion

Release version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “1.0”, this property should be set to 2.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 69 (289)

readonly Integer majorVersion

Major version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “1.0”, this property should be set to 1.

readonly Integer minorVersion

Minor version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “1.0”, this property should be set to 0.

readonly String oipfProfile

Profile of the OIPF specification implemented by the OITF. Valid profiles are “EMP”, “BMP” and “OIP”.

7.3.3.2 Methods

Boolean setScreenSize(Integer width, Integer height)

Description Set the resolution of the graphics plane. If the specified resolution is not supported by the
OITF, this method SHALL return false. Otherwise, this method SHALL return true.

width The width of the display, in pixels. Arguments

height The height of the display, in pixels.

Integer setPvrSupport(Integer state)

Description Set the type of PVR support used by the application. The types of PVR supported by the
receiver MAY not be supported by the application; in this case, the return value indicates
the PVR support that has been set.

Arguments state The type of PVR support desired by the application. More than one type of PVR
functionality MAY be specified, allowing the receiver to automatically select the
appropriate mechanism. Valid values are:

Value Description

0 PVR functionality is not supported. This is the default value if
<recording> as specified in section 9.3.3 has value false.

1 PVR functionality is supported in the OITF. This is the default
value if <recording> as specified in section 9.3.3 has value
true.

Values are stored as a bitfield.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 70 (289)

7.3.4 The NetworkInterface class
The NetworkInterface class represents a physical or logical network interface in the receiver.

7.3.4.1 Properties

readonly String ipAddress

The IP address of the network interface, in dotted-quad notation for IPv4 or colon-hexadecimal notation
for IPv6. This property SHALL take the value undefined if no IP address has been assigned. The IP
address may be link local, private or global, depending on which address block it belongs to, as
reserved by IANA.

readonly String macAddress

The colon-separated MAC address of the network interface.

readonly Boolean connected

Flag indicating whether the network interface is currently connected.

Boolean enabled

Flag indicating whether the network interface is enabled. Setting this property SHALL enable or
disable the network interface.

7.3.5 The AVOutput class
The AVOutput class represents an audio or video output on the local platform.

7.3.5.1 Properties

readonly String name

The name of the output. Each output SHALL have a name that is unique on the local system. At least
one of the outputs SHALL have the name "all" and SHALL represent all available outputs on the
platform.

readonly String type

The type of the output. Valid values are “audio”, “video”, or “both”.

Boolean enabled

Flag indicating whether the output is enabled. Setting this property SHALL enable or disable the
output.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 71 (289)

Boolean subtitleEnabled

Flag indicating whether the subtitles are enabled. The language of the displayed subtitles is
determined by a combination of the value of the Configuration.preferredSubtitleLanguage
property (see section 7.3.2.1) and the subtitles available in the stream. For audio outputs, setting this
property will have no effect.

String videoMode

Read or set the video format conversion mode, for which hardware support MAY be available on the
device. Valid values are:

normal

stretch

zoom

The following table provides guidance as to the relationship between videoMode, aspectRatio
(output) and the aspectRatio (input) of the AVVideoComponent class.

videoMode value aspectRatio
(input/output)

value
Normal Stretch Zoom

16:9 input /

4:3 output

Black bars at top and
bottom, all video visible

No black bars, picture
stretched vertically

No black bars, picture clipped
on left and right sides

4:3 input /

16:9 output

Black bars on left and
right, all video visible

No black bars, picture
stretched horizontally

No black bars, picture clipped
top and bottom

4:3 input /

4:3 output

No change No change No change

16:9 input /

16:9 output

No change No change No change

The DAE application graphical layer is unaffected by the videoMode.

For audio-only outputs, setting this property SHALL have no effect.

String digitalAudioMode

Read or set the output mode for digital audio outputs for which hardware support MAY be available on
the device. Valid values are shown below.

Value Behaviour

ac3 Output AC-3 audio.

uncompressed Output uncompressed PCM audio.

For video-only outputs, setting this property SHALL have no effect.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 72 (289)

String audioRange

Read or set the range for digital audio outputs for which hardware support MAY be available on the
device. Valid values are shown below

Value Behaviour

Normal Use the normal audio range.

Narrow Use a narrow audio range.

Wide Use a wide audio range.

For video-only outputs, setting this property SHALL have no effect.

String hdVideoFormat

Read or set the video format for HD video outputs for which hardware support MAY be available on the
device. Valid values are:

480i

480p

576i

576p

720p

1080i

1080p

For audio-only or standard-definition outputs, setting this property SHALL have no effect.

String tvAspectRatio

Indicates the output display aspect ratio of the display device connected to this output for which
hardware support MAY be available on the device. Valid values are:

4:3

16:9

For audio-only outputs, setting this property SHALL have no effect.

readonly StringCollection supportedVideoModes

Read the video format conversion modes that may be used when displaying a 4:3 input video on a 16:9
output display or 16:9 input video on a 4:3 output display. The assumption is that the hardware
supports conversion from either format and there is no distinction between the two. See the definition
of the videoModes property for valid values.

For audio outputs, this property will have the value null.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 73 (289)

readonly StringCollection supportedDigitalAudioModes

Read the supported output modes for digital audio outputs. See the definition of the
digitalAudioMode property for valid values.

For video outputs, this property will have the value null.

readonly StringCollection supportedAudioRanges

Read the supported ranges for digital audio outputs. See the definition of the audioRange property for
valid values.

For video outputs, this property will have the value null.

readonly StringCollection supportedHdVideoFormats

Read the supported HD video formats. See the definition of the hdVideoFormat property for valid
values.

For audio outputs, this property will have the value null.

readonly StringCollection supportedAspectRatios

Read the supported TV aspect ratios. See the definition of the tvAspectRatio property for valid
values.

For audio outputs, this property will have the value null.

7.3.6 The NetworkInterfaceCollection class
A NetworkInterfaceCollection object represents a read-only collection of NetworkInterface objects. Next
to the properties and methods defined below a NetworkInterfaceCollection Object SHALL support the array
notation to access the NetworkInterface objects in this collection

7.3.6.1 Properties

readonly Integer length

The number of items in the collection.

7.3.6.2 Methods

NetworkInterface item(Integer index)

Description Return the item at position index in the collection.

Arguments index The index of the item that SHALL be returned.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 74 (289)

7.3.7 The AVOutputCollection class
An AVOutputCollection object represents a read-only collection of AVOutput objects. Next to the properties and
methods defined below a AVOutputCollection Object SHALL support the array notation to access the AVOutput
objects in this collection.

7.3.7.1 Properties

readonly Integer length

The number of items in the collection.

7.3.7.2 Methods

AVOutput item(Integer index)

Description Return the item at position index in the collection.

Arguments index The index of the item that SHALL be returned.

7.4 Content download APIs
This section defines the content-on-demand download interfaces for both DRM-protected and non-DRM protected
content.

An OITF and a DAE application which have indicated support for downloading content by providing value “true” for
element <download> in their capability profile as specified in section 9.3.4 SHALL adhere to the following
requirements.

NOTE: Annex D clarifies the purpose and the use of these interfaces in more detail.

7.4.1 The application/oipfDownloadTrigger embedded object
An OITF SHALL support a non-visual embedded object of type “application/oipfDownloadTrigger”, with the
following JavaScript API to enable passing a content-access descriptor to an underlying download manager using
JavaScript.

The functionality as described in this section is subject to the security model of section 10.

7.4.1.1 Methods

String registerDownload(String contentAccessDownloadDescriptor,

 Date downloadStart)

Description Send contentAccessDownloadDescriptor to underlying download manager as a
String formatted according to the Content Access Download Descriptor XML Schema as
specified in Annex E.

Returns a String value representing a unique identifier to identify the download, if the
contentAccessDownloadDescriptor is valid and is accepted for triggering a download.
If the OITF supports the application/oipfDownloadManager as specified in section
7.4.3, this SHALL be the value of the “id” attribute of the associated Download object.
Note that if the Content Access Download Descriptor contains multiple content items to be
downloaded, the associated Download objects for each of these content items SHALL
have the same value for the “id” value. The associated Download objects can be retrieved
through method getDownloads() as defined in section 7.4.3.3.

The OITF SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the contentAccessDownloadDescriptor is not
accepted for triggering a download.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 75 (289)

contentAccessDownloadDescriptor String formatted according to the Content
Access Download Descriptor XML Schema as
specified in Annex E.

Arguments

downloadStart Optional argument indicating the time at which
the download should be started. If the argument
is not included, or takes a value of null then
the download should start as soon as possible.

String registerDownloadURL(String URL, String contentType, Date downloadStart)

Description This method triggers the OITF to initiate a download of the content pointed to by the URL
and the given content type.

The contentType attribute SHALL reflect the expected type of content returned by the
content server when connecting to the URL. The contentType can be used to evaluate if
the content type is part of the list of accepted content types of the OITF. For example, if the
OITF does not support content Type “video/MP2T”, then the registerDownloadURL
method could return undefined to indicate this to the application in advance of the
download.

If contentType has value “application/vnd.oipf.ContentAccessDownload+xml”,
the method SHALL return a download identifier, after which the OITF SHALL fetch the
Content Access Download Descriptor, after which the same SHALL happen as if
registerDownload() as defined in section 4.6.3.1 with the given Content Access
Download Descriptor as argument was called.

Returns a String value representing a unique identifier to identify the download, if the
given arguments are acceptable by the OITF to trigger a download. If the OITF supports
the application/oipfDownloadManager as specified in section 7.4.3, this SHALL be
the value of the “id” attribute of the associated Download object(s).

The OITF SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the given arguments are not acceptable by the OITF to
trigger a download.

URL The URL from which the content can be fetched.

contentType The type of content referred to by the URL attribute. The
contentType can be used to evaluate if the content type is part of
the list of supported content types of the OITF.

Arguments

downloadStart Optional argument indicating the time at which the download should
be started. If the argument is not included, or takes a value of null
then the download should start as soon as possible.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 76 (289)

Integer checkDownloadPossible(Integer sizeInBytes)

Description Checks whether a download of a given sizeInBytes would be possible at this moment in
time.

Possible return values are:

Value Semantics

0 Successful, i.e. the download could be successfully completed if it would be
started at this moment in time.

1 Insufficient Storage, i.e. the download could be started, but is unlikely to
complete successfully, since insufficient storage capacity is available to fully
store the content to be downloaded.

2 Storage not available, i.e. the download would fail, since the storage is
currently unavailable, e.g. in case of removable storage.

Arguments sizeInBytes Integer value with the given size of the download in bytes.

7.4.2 Extensions to application/oipfDownloadTrigger
If an OITF has indicated support for both BCG metadata (i.e. by giving element <clientMetadata> value “true”
and a “type” attribute with value “bcg”), and the download management APIs defined in section 7.4.3 (i.e. by giving
attribute "manageDownloads" of the <download> element a value unequal to ‘none’) in the client capability
description, then the following additional method SHALL be supported by the
application/oipfDownloadTrigger object defined in section 7.4.1

The functionality as described in this section is subject to the security model of section 10.

String registerDownloadFromCRID(String CRID, String IMI, Date downloadStart)

Description Send (CRID,IMI) to underlying download manager. Returns a String value representing
a unique identifier to identify the download if the (CRID,IMI) tuple is valid and is
accepted for triggering a download. If the OITF supports the
application/oipfDownloadManager as specified in section 7.4.3, this SHALL be the
value of the “id” attribute of the associated Download object(s), which corresponds to the
CRID in this case.

The OITF SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the given (CRID, IMI) tuple is not accepted for
triggering a download.

The values of the name, description, parentalRating and DRMControl properties
SHALL be based on the metadata provided for the item matching that CRID.

CRID The TV-Anytime Content reference ID that points to the general
information about the item to download that does not change
regardless of how the content is published or broadcast

IMI The TV-Anytime Instance Metadata ID that points to the specific
information related to the item to download, such as content location,
usage rules (pay-per-view, etc.) and delivery parameters (e.g. video
format).

Arguments

downloadStart Optional argument indicating the time at which the download should
be started. If the argument is not included, or takes a value of null
then the download should start as soon as possible.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 77 (289)

7.4.3 The application/oipfDownloadManager embedded object
In a managed network, privileged applications may need access to the download management functionality in a CoD
system. This access may be required to implement a UI to the download manager, to queue a download or to display the
progress of a specific download. OITFs SHOULD support an “application/oipfDownloadManager” object with
the following interface.

Clients supporting the download management APIs as specified in this section SHALL indicate this by adding the
attribute "manageDownloads" to the <download> element with a value unequal to ‘none’ in the client capability
description as defined in section 9.3.4.

The functionality as described in this section is subject to the security model of section 10.

7.4.3.1 State diagram for the application/oipfDownloadManager object
The following state machine provides an overview of the state changes that are possible in the download manager. The
states reflect the changes signalled to applications via the onDownloadStateChange event handler.

Figure 10: State diagram for embedded application/oipfDownloadManager objects (normative)

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 78 (289)

7.4.3.2 Properties

function onDownloadStateChange(Download item, Integer state, Integer reason)

The function that is called when the status of a download has changed. The specified function is called
with three arguments item, state and reason, which are defined as follows:

• Download item – the Download object whose state has changed.

• Integer state – the new state of the download. Valid values include:

Status Semantics

1 The download has completed successfully.

2 The download is in progress.

4 The download has been paused (either by an application or automatically by
the OITF).

8 The download has failed.

16 The download has been queued but has not yet started.

32 The download has stalled due to a transient failure and the Download Manager
is attempting to recuperate and re-establish the download.

• Integer reason. Extended reason code. This is only valid if the value of the state argument
is 8.

Reason Semantics

0 The local storage device is full.

1 The item cannot be downloaded (e.g. because it has not been purchased).

2 The item is no longer available for download.

3 The item is invalid due to bad checksum or length.

4 Other reason.

If no error has occurred, this argument SHALL take the value undefined.

readonly DiscInfo discInfo

Get information about the status of the local storage device. The DiscInfo class is defined in section
7.16.4.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 79 (289)

7.4.3.3 Methods

Boolean pause(Download download)

Description Pause an in-progress, queued or stalled download and return true.. For in-progress
downloads, more data SHALL NOT be downloaded until the download is resumed.
The HTTP request and TCP socket are interrupted and closed.

For completed or failed downloads, this operation SHALL return false.

Arguments download The download to be paused.

Boolean resume(Download download)

Description Resume a paused download. If the download is not paused, this operation SHALL
return false.

Arguments download The download to be resumed.

Boolean remove(Download download)

Description Remove the download and any data and media content associated with it and return
true. Return false if the download attribute does not refer to a valid download.

As a side effect of this method, all properties on download SHALL be set to
undefined. Any method calls subsequently performed by an application which pass
download as an argument SHALL return false.

If the A/V Control object is referring to the indicated download for playback the state
in the A/V Control object SHALL be automatically changed to (6) error state.

Arguments download The download to be deleted.

DownloadCollection getDownloads(String id)

Description Returns a collection of downloads, for which the value of the Download.id property
corresponds to the given id parameter. The downloads returned in the collection
SHALL be filtered according to the value of the “manageDownloads” attribute of the
<download> element in the OITF’s capability description (i.e. from the same
application, same domain or from all applications)

If the value of id is null, it returns all downloads for the scope indicated by the
“manageDownloads” attribute.

Arguments id Optional argument identifying the downloads to be retrieved. If
present and not null, this is an identifier corresponding to the “id”
attribute of zero or more Download objects. If the value of id is
null, or the argument is not included, all downloads for the scope
indicated by the “manageDownloads” attribute are returned.

DownloadCollection createFilteredList(Boolean currentDomain, Integer states)

Description Create a filtered list of downloads. Returns a subset of downloads that are managed
by the receiver.

The currentDomain flag indicates whether downloads from FQDNs other than the
current page are included in the returned collection. This flag MAY be set to one of

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 80 (289)

three values:

Value Meaning

true The download is added if and only if it was initiated from the
FQDN of the calling document.

If the application has the permission
permission_downloadmanager (see section 10.1.4), only
downloads initiated by the calling application shall be added.

false The download is added if and only if it was not initiated from the
FQDN of the calling document.

If the application does not have the permission
permission_downloadmanager_all (see section 10.1.4), the OITF
SHALL return an empty collection.

undefined The download is added regardless of the domain that the
download was initiated from.

If the application has the permission
permission_downloadmanager (see section 10.1.4), only
downloads initiated by the calling application shall be added.

If the application has the permission
permission_downloadmanager_samedomain (see section 10.1.4),
only downloads initiated by applications from the same FQDN
shall be added.

The states flag indicates which state(s) of downloads that should be included in the
list. The value of this flag is the arithmetic sum of one or more possible values of the
status property of the Download object; only downloads whose state matches one of
the values included in this sum are included in the returned collection.

currentDomain Flag indicating whether downloads from other domains
SHALL be added to the list.

Arguments

states Indicates that states of downloads that should be
included in the returned list.

7.4.3.4 Events
For the intrinsic event “onDownloadStateChange”, a corresponding DOM level 2 event SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onDownloadStateChange DownloadStateChange Bubbles: No

Cancelable: No

Context Info: item, state,
reason

NOTE: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving a DownloadStateChange event during the bubbling or the capturing phase.
Applications that use DOM 2 event handlers SHALL call the addEventListener() method on the

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 81 (289)

application/oipfDownloadManager object. The third parameter of addEventListener, i.e. “useCapture”,
will be ignored.

7.4.4 The Download class
A Download object being made available by the application/oipfDownloadManager embedded object
represents a content item that has either been downloaded from a remote server or is in the process of being downloaded.

If the ID of a download is a TV-Anytime CRID, then the values of the name, description and parentalRatings
properties SHALL be set by the OITF based on the metadata provided for the item matching that CRID

7.4.4.1 Properties

readonly Integer totalSize

The total size (in bytes) of the download.

readonly Integer state

The current state of the download. When this changes, a DownloadStateChange event SHALL be
generated. Valid values are:

Value Description

1 The download has completed.

2 The download is in progress.

4 The download has been paused (either by an application or automatically
by the platform).

8 The download has failed.

16 The download is queued but has not yet started.

32 The download has stalled due to a transient failure and the Download
Manager is attempting to recuperate and re-establish the download.

Note: these values are used as a bitfield in the DownloadManager.createFilteredList() method.

readonly Integer amountDownloaded

The amount of data that has been downloaded returned in bytes, or zero if no data has been
downloaded.

readonly String name

The name of the download or undefined if this information is not present. In case the download is
triggered through a content access download description document, this corresponds to the value for
the <Title> element in the content-access download descriptor.

readonly String id

The ID of the download as determined by the OITF.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 82 (289)

readonly String contentURL

The URL the content is being fetched from, or undefined if this information is not available.

readonly String description

A description of the download or undefined if this information is not present. In case the download is
triggered through a content access download description document, this corresponds to the value for
the <Synopsis> element in the content-access download descriptor, or undefined if this element is
not present.

readonly ParentalRatingCollection parentalRatings

The parental rating collection related to the downloaded content item, or undefined if this information
is not present. In case the download is triggered through a content access download description
document, this corresponds to the value for the <ParentalRating> element in the content-access
download descriptor, or undefined if this element is not present

readonly DRMControlInfoCollection drmControl

The DRMControlInformation object corresponding to the DRM Control information of the
downloaded content item, or undefined if this information is not present. In case the download is
triggered through a content access download description document, this corresponds to the value for
the <DRMControlInformation> element associated with the same DRMSystemID of the selected
<ContentURL>, or is undefined if this information is not present.

The related DRMControlInformation object is defined in section 7.4.6.

readonly Date startTime

The time that the download is scheduled to start (in the case of scheduled downloads) or undefined if
no start time was set.

readonly Integer timeElapsed

The time (in seconds) that has elapsed since the download of the item was started. The elapsed time
SHALL be based on the time spent in the in-progress and stalled download states. This SHALL NOT
include any time the item spent queued for download.

readonly Integer timeRemaining

The estimated time remaining (in seconds) for the download to complete. The estimated time SHALL
be based on the time spent in the in-progress and stalled download states. The estimate SHALL NOT
includes any time the item spent queued for download or paused. If this is unknown the value of this
property SHALL be undefined.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 83 (289)

readonly String transferType

In case the download is triggered through a content access download description document, this is the
value of property “TransferType” of the selected <ContentURL>. In case the download is not
triggered through a content access descriptor document, the OITF is responsible for returning either
the value “playable_download” or “full_download”, based on criteria defined by the OITF.

readonly String originSite

In case the download is triggered through a content access download description document, this is the
value of element <OriginSite>. In case the download is not triggered through a content access
descriptor document, this is the URL of the site that initiated the download.

readonly String originSiteName

In case the download is triggered through a content access download description document, this is the
value of element <OriginSiteName>, or undefined if this information is not present. In case the
download is not triggered through a content access descriptor document, this property is undefined.

readonly String contentID

A unique identification of the content item relative to originSite. In case the download is triggered
through a content access download description document, and a <ContentID> element has been
defined for the given content item, this is the value of element <ContentID>. If the download is
started using registerDownloadFromCRID(), this is the TV Anytime CRID. This property shall take
the value undefined if no content ID is available.

readonly String iconURL

The URL of an image that provides a visual representation of the item that is being downloaded. In
case the download is triggered a content access download description document, this is the value of
element <IconURL>, or undefined if this element is not present. In case the download is not
triggered through a content access descriptor document, this property is undefined.

7.4.5 The DownloadCollection class
A DownloadCollection is a collection of Download objects, ordered by the time that the download was initiated.
Next to the properties and methods defined below a DownloadCollection Object SHALL support the array notation
to access the Download objects in this collection

7.4.5.1 Properties

readonly Integer length

The number of items in the collection.

7.4.5.2 Methods

Download item(Integer index)

Description Return the item at position index in the collection, or undefined if the index is not
valid.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 84 (289)

Arguments index The index into the collection.

7.4.6 The DRMControlInformation class
A DRMControlInformation object represents the DRM Control information structure defined in section 3.3.2 of
[META].

7.4.6.1 Properties

readonly String drmType

URN with the DVB CASystemID (16 bit number) in there. DRMType shall be signalled by prefixing the
decimal number format of CA_System_ID with "urn:dvb:casystemid:". For example, hexadecimal
0x4AF4 is assigned as CA_System_ID for “Marlin” by DVB, “Marlin” drmType is encoded as
“urn:dvb:casystemid:19188”.

readonly String rightsIssuerURL

A URL used by OITF to obtain rights for this content item.

readonly String silentRightsURL

A URL used by OITF to obtain rights silently, e.g. a Marlin Action Token.

readonly String drmContentID

DRM Content ID for CoD or scheduled content item, e.g. the Marlin Content ID.

readonly String previewRightsURL

A URL used by OITF to obtain rights silently for preview of this content item, e.g. a Marlin Action
Token.

readonly String drmPrivateData

Private data for the DRM scheme indicated in drmType to be applied for this content item. Private DRM
Data is actually structured as an XML document whose schema is specific to the considered DRM
system. One example is Marlin DRM private data schema defined in [CSP].

readonly Boolean doNotRecord

A flag indicating whether this content item is recordable or not.

readonly Boolean doNotTimeShift

A flag indicating if this content item is allowed for time shift play back.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 85 (289)

7.4.7 The DRMControlInfoCollection class
A DRMControlInfoCollection represents a collection of DRM Control information sets related to a specific
content. Next to the properties and methods defined below a DRMControlInfoCollection Object SHALL support
the array notation to access the DRM Control information sets in this collection

7.4.7.1 Properties

readonly Integer length

The number of items in the list.

7.4.7.2 Methods

DRMControlInformation item(Integer index)

Description Return the item at position index in the list, or undefined if no item is present at that
position.

Arguments index The index of the DRM Control Information.

7.5 Content On Demand Metadata APIs
This section SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a “type”
attribute with value “bcg” in the capability description and MAY apply for OITFs that have indicated
<clientMetadata> with value “true” and a “type” attribute with value “dvb-si”

7.5.1 The application/oipfCodManager embedded object
OITFs that have indicated <clientMetadata> with value “true” and a “type” attribute with value “bcg” SHALL
implement an “application/oipfCodManager” embedded object with the following interface.

Content is organised into catalogues, where each catalogue contains a hierarchy of folders that are used to organise
individual content items. The structure of the catalogue SHALL be determined by the server managing that catalogue and
SHALL be reflected in the structure of the metadata passed to the OITF.

The three types of content in a CoD catalogue are:

 Assets, represented by the CODAsset class. A CODAsset is a user-level description of a piece of CoD content,
and so it is more concerned with information such as the price, rental period, description and parental rating
rather than detailed technical information about the asset such as encoding format. A CoD asset MAY represent
a single movie, or a bundle of movies offered for a single price.

 Folders, represented by the CODFolder class.

 Services represented by the CODService class. CODService objects are a specific type of container
representing subscription VoD (SVOD) services, where users purchase a group of assets which may change over
time rather than a single movie or TV show.

The CODAsset, CODFolder and CODService classes define a type property that allows these classes to be
distinguished by applications. For each class, this property SHALL take the value defined below:

Class Value

CODFolder 0

CODAsset 1

CODService 2

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 86 (289)

This specification defines the mapping between the CoD API and BCG metadata. Mappings between the CoD API and
other CoD metadata sources are not specified in this document.

7.5.1.1 Properties

readonly ContentCatalogueCollection catalogues

A collection of all available CoD catalogues, as listed in an SD&S BCG Discovery record.

function onContentCatalogueEvent(Integer action)

This function is the DOM 0 event handler for events relating to changes in a content catalogue
collection. The specified function is called with the argument action:

• Integer action - The type of event. For current versions of the specification, this property
SHALL always have the value 0 to indicate a change in the list of available catalogues.

function onContentAction(Integer action, Integer result,

 Object item, ContentCatalogue catalogue)

This function is the DOM 0 event handler for events relating to actions carried out on an item in a
content catalogue. The specified function is called with the following arguments:

• Integer action - The type of action that the event refers to. Valid values are:

Value Description

0 An operation to browse a content collection (e.g. getting a page from the
collection).

1 Indicates that more information is available about this item (e.g. that more
information has been retrieved from the server).

• Integer result - The result of the action. Valid values are:

Value Description

0 The operation succeeded.

1 The item no longer exists in the catalogue.

2 The server has not responded in the timeout period.

3 Communication with the server has been interrupted.

• Object item - The item in the catalogue that the event refers to.

• ContentCatalogue catalogue - The parent catalogue of the affected object.

7.5.1.2 Events
For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 87 (289)

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onContentCatalogueEvent ContentCatalogueEvent Bubbles: No

Cancelable: No

Context Info: action

onContentAction ContentAction Bubbles: No

Cancelable: No

Context Info: action,
result, item, catalogue

NOTE: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving the events listed above during the bubbling or the capturing phase. Applications that use
DOM 2 event handlers SHALL call the addEventListener() method on the LocalSystem object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.5.2 The CatalogueCollection class
A CatalogueCollection object represents a set of content catalogues. Next to the properties and methods defined
below a CatalogueCollection Object SHALL support the array notation to access the content catalogues in this
collection

7.5.2.1 Properties

readonly Integer length

The number of items in the collection.

7.5.2.2 Methods

ContentCatalogue item(Integer index)

Description Return the item at position index in the list, or undefined if no item is present at that
position.

The position MAY be specified using array bracket notation instead of calling this
method directly.

Arguments index The index into the collection.

7.5.3 The ContentCatalogue class
A ContentCatalogue represents a content catalogue for a content on demand service.

To receive events relating to operations on items in a catalogue, applications MAY add listeners for “ContentAction”
events to the application/oipfCodManager object.

7.5.3.1 Properties

readonly String name

The name of the content catalogue that should be displayed to the user. The value of this property is
given by the Name element in the catalogue's BCG discovery record.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 88 (289)

readonly CODFolder rootFolder

The root folder of the content catalogue.

7.5.3.2 Methods

CODFolder getPurchaseHistory()

Description Get the list of items that have been purchased from the catalogue by the current user,
including currently active rentals.

Items in this list will be derived from children of the BCG UserActionList element
which have an ActionType of buy. If the ActionList element is not present, this
method SHALL return null.

7.5.4 The ContentCatalogueEvent class
This section is intentionally left empty.

7.5.5 The CODFolder class
CODFolder represents a folder in a CoD catalogue. Folders may contain other folders, and an asset may be present in
more than one folder.

Because a content list may contain a large number of items, the contents of the list are made available on demand using a
paging model. Applications MAY request the contents of the list in ‘pages’ of an arbitrary size. The data SHALL be
fetched from the appropriate source, and application SHALL be notified when the data is available.

Each folder is described by a GroupInformation element in the BCG Group Information Table.

7.5.5.1 Properties

readonly Integer type

The type of the item, used to distinguish between the types of objects that may be contained in a folder
in a CoD catalogue. This SHALL always have the value 0 for folders.

readonly String uri

The URI used to refer to the folder. The value of this property is given by the GroupId attribute of the
GroupInformation element representing this folder.

readonly String name

The name of the folder. The value of this property is given by the Title element that is a descendant
of the GroupInformation element representing this folder.

readonly String description

A description of the folder, for display to an end user. The value of this property is given by the
Synopsis element that is a descendant of the GroupInformation element representing this folder.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 89 (289)

readonly String thumbnailUri

The URI of an image associated with this folder.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Promotional Still Image, the value of this property is given by the MediaURI element that is a
descendant of that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

readonly Integer length

The number of items in the current page. If getPage() has not yet been called, the value of this
property SHALL be undefined.

readonly Integer currentPage

The page number of the currently-available results, as specified in the last call to getPage(). If
getPage() has not yet been called, the value of this property SHALL be undefined.

readonly Integer pageSize

The number of items that were requested from the content catalogue in a call to getPage(). This
MAY be different form the number of items that are available (e.g. the last page in the collection).

If getPage() has not yet been called, the value of this property SHALL be undefined.

readonly Integer totalSize

The total number of items in the folder. This MAY be undefined until getPage() has been called.

The value of this property may be given by the numOfItems attribute of the GroupInformation
element representing this folder.

7.5.5.2 Methods

Object item(Integer index)

Description Return the item at position index in the current page, or undefined if no item is
present at that position. This function SHALL only return objects that are instances of
CODAsset, CODFolder, or CODService.

Applications SHALL be able to access items in the collection using array notation
instead of calling this method directly.

Arguments index The index into the collection.

void getPage(Integer page, Integer pageSize)

Description Retrieve one page of the folder’s contents. The application SHALL be notified by an
event targeted at the folder's parent content catalogue when the data is available.

Calls to this method SHALL cancel any outstanding requests.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 90 (289)

page The number of the page for which data should be retrieved, indexed
from zero.

Arguments

pageSize The size of the page.

void abort()

Description Abort the current request for a new page of folder contents. Any results for this folder
SHALL be removed (i.e. the value of the length property will be 0 and any calls to
the item() method SHALL return undefined),

7.5.6 The CODAsset class
The CODAsset represents a piece of CoD content that can be purchased and played. A CODAsset object MAY refer to
a bundle of content items that are purchased together but which can only be played individually.

Some fields of a CODAsset object MAY not be populated until an application requests them; in this case the data MAY
be fetched asynchronously from a server. Fields where the data has not been fetched from the server SHALL have a
value of undefined. Fields for which data is not available on the server SHALL have a value of null.

Note: The lookupMetadata() method has been removed from this class.

7.5.6.1 Properties

readonly Integer type

The type of the item, used to distinguish between the types of objects that may be contained in a folder
in a CoD catalogue. This property SHALL always have the value 1 for CoD assets.

readonly String uri

The CRID of the asset. The value of this property is given by the programId attribute of the BCG
ProgramInformation element that describes the asset.

readonly String name

The title of the asset that will be displayed to the user. The value of this property is given by the BCG
Title element that is a child of the asset’s BasicDescription element.

readonly String description

A description of the asset, for display to an end user. The value of this property is given by the BCG
Synopsis element that is a child of the asset’s BasicDescription element.

readonly StringCollection genres

A collection of genres that describe this asset. The value of this property is the concatenation of the
values of any Name elements that are children of Genre elements in the asset’s description.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 91 (289)

readonly ParentalRatingCollection parentalRatings

The parental rating values of the asset. This information will be read from the ParentalGuidance
elements of an asset’s description, if present.

readonly Boolean blocked

Flag indicating whether the asset is blocked due to parental control settings (i.e. whether its parental
rating value exceeds the current system threshold).

readonly Boolean locked

Flag indicating whether the current state of the parental control system prevents the asset from being
viewed (e.g. a correct parental control PIN has not been entered to allow the item to be viewed).

readonly String thumbnailUri

The URI of an image associated with this asset.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Promotional Still Image, the value of this property is given by the MediaURI element that is a
descendant of that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

readonly String price

The price of the asset, in a form that can be displayed to the user. The value of this property is the
concatenation of the value of the Price element that is a child of a PurchaseItem element in the
asset’s description and the value of the Price element’s currency attribute.

For example, a Price element of
<Price currency="JPY">500</Price>

would give the value 500 JPY for this field. Implementations MAY replace the currency code with the
appropriate currency symbol (e.g. ¥).

readonly Integer rentalPeriod

The period for which the asset can be rented, in hours.

For assets descriptions containing a Purchase element with a PurchaseType of
urn:tva:metadata:cs:PurchaseTypeCS:2004:playForPeriod, the value of this property is
derived from the QuantityUnit and QuantityRange elements that are children of that Purchase
element. If a Purchase element with the appropriate PurchaseType is not present, the value of this
field SHALL be undefined.

readonly Integer playCount

The number of plays allowed for this asset when it is purchased.

For assets descriptions containing a Purchase element with a PurchaseType of
urn:tva:metadata:cs:PurchaseTypeCS:2004:playCounts, the value of this property is derived

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 92 (289)

from the QuantityUnit and QuantityRange elements that are children of that Purchase element. If
a Purchase element with the appropriate PurchaseType is not present, the value of this field SHALL
be undefined.

readonly Integer duration

The duration of the asset, in seconds. The value of this property is given by the BCG Duration
element that is a child of the asset’s BasicDescription element.

readonly String previewUri

The URI used to refer to a preview of the asset.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Trailer or Preview, the value of this property is given by the MediaURI element of the
MediaLocator contained in that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

readonly BookmarkCollection bookmarks

A collection of the bookmarks set in a recording. If no bookmarks are set, the collection SHALL be
empty.

7.5.6.2 Methods

Boolean isReady()

Description Check whether sufficient information is available to make a purchase or play the
asset. Due to the asynchronous nature of CoD catalogues, not all of the information
required to play or purchase a CoD asset may have been received by the OITF at
any given time. If all of the required information is available, this method SHALL
return true. Otherwise, this method SHALL request the missing information and
return false. When the information is available, the application SHALL be notified
via a ContentAction event with the reason code 1.

7.5.7 The CODService class
The CODService class is a subclass of CODFolder that represents a subscription CoD service. A subscription CoD
service is similar to a folder, except that:

• The service SHALL be purchased in its entirety, rather than purchasing individual items from the service.

• Business rules may prevent browsing of the content within a service unless the service has already been
purchased.

A CODService MAY contain a number of assets, folders and services.

Note: The lookupMetadata() method has been removed from this class.

7.5.7.1 Properties

readonly Integer length

The number of items in the current page of the service.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 93 (289)

readonly Integer currentPage

The page number of the currently-available results, as specified in the last call to getPage(). If
getPage() has not yet been called, the value of this property will be undefined.

readonly Integer pageSize

The number of items that were requested from the content catalogue in a call to getPage(). This
MAY be different from the number of items that are available (e.g. the last page in the collection).

If getPage() has not yet been called, the value of this property SHALL be undefined.

readonly Integer totalSize

The total number of items in the service. This MAY be undefined until getPage() has been called.

The value of this property may be given by the numOfItems attribute of the GroupInformation
element representing this folder.

readonly Integer type

The type of the item, used to distinguish between the types of objects that may be contained in a folder
in a CoD catalogue. This property SHALL always have the value 2 for a CoD service.

readonly String uri

The URI used to refer to the service. The value of this property is given by the BCG ServiceURL
element that is a child of the ServiceInformation element that describes the service.

readonly String name

The name of the service that will be displayed to the user. The value of this property is given by the
BCG Name element that is a child of the ServiceInformation element describing the service.

readonly String description

A description of the service, for display to an end user. The value of this property is given by the BCG
ServiceDescription element that is a child of the ServiceInformation element describing the
service.

readonly String thumbnailUri

The URI of an image associated with this service. The value of this property is derived from the value
of the first Logo element that is a child of the BCG ServiceInformation element describing the
service. If this element specifies anything other than the URL of an image, the value of this property
SHALL be undefined.

Alternatively, for services whose BCG description contains a RelatedMaterial element indicating a
relationship of Promotional Still Image, the value of this property is given by the MediaURI
element of the MediaLocator contained in that element.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 94 (289)

For assets without an appropriate RelatedMaterial or Logo element, the value of this property shall
be undefined.

readonly String previewUri

The URI used to refer to a preview of the content.

For services whose BCG description contains a RelatedMaterial element indicating a relationship of
Trailer or Preview, the value of this property is given by the MediaURI element of the
MediaLocator contained in that element.

For services without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

7.5.7.2 Methods

Boolean isReady()

Description Check whether sufficient information is available to make a purchase. Due to the
asynchronous nature of CoD catalogues, not all of the information required to play or
purchase a CoD service may have been received by the OITF at any given time. If
all of the required information is available, this method SHALL return true.
Otherwise, this method SHALL request the missing information and return false.
When the information is available, the application SHALL be notified via a
ContentAction event with the action code 1.

Object item(Integer index)

Description Return the item at position index in the current page, or undefined if no item is
present at that position. This function SHALL only return objects that are instances of
CODAsset, CODFolder, or CODService.

Applications SHALL be able to access items in the collection using array notation
instead of calling this method directly.

Arguments index The index into the collection.

void getPage(Integer page, Integer pageSize)

Description Retrieve one page of the services contents. The application SHALL be notified by an
event targeted at the services parent content catalogue when the data is available.

Calls to this method SHALL cancel any outstanding requests.

page The number of the page for which data should be retrieved, indexed
from zero.

Arguments

pageSize The size of the page.

void abort()

Description Abort the current request for a new page of contents. Any results for SHALL be
removed (i.e. the value of the length property will be 0 and any calls to the item()
method SHALL return undefined),

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 95 (289)

7.6 Content Service Protection API
The following requirements SHALL apply to OITF and/or server devices which have indicated support for DRM
protection by providing one or more <drm> elements as specified in section 9.3.10:

7.6.1 The application/oipfDrmAgent embedded object
An OITF SHALL support a non-visual embedded object of type “application/oipfDrmAgent”, with the following
JavaScript API, to enable in-session message exchange from the web page with an underlying DRM agent.

Access to the functionality of the application/oipfDrmAgent embedded object SHALL adhere to the security
requirements as defined in section 10.1

Note: Annex D provides a clarification to the browser interaction model when dealing with (services offering) protected
content

7.6.1.1 Properties

function onDRMMessageResult(String msgID, String resultMsg,

 Integer resultCode)

The function that is called when the underlying DRM agent has a result message to report to the
current HTML document as a consequence of a call to sendDRMMessage. The specified function is
called with three arguments msgID, resultMsg and resultCode which are defined as follows:

• String msgID – identifies the original message which has lead to this resulting message.

• String resultMsg – DRM system specific result message.

• Integer resultCode – result code. Valid values include:

Result
message

Description Semantics

0 Successful The action(s) requested by sendDRMMessage()
completed successfully.

1 Unknown error sendDRMMessage() failed because an unspecified
error occurred.

2 Cannot process
request

sendDRMMessage() failed because the DRM agent
was unable to complete the request.

3 Unknown MIME
type

sendDRMMessage() failed, because the specified
Mime Type is unknown for the specified DRM
system indicated in the MIME type.

4 User Consent
Needed

sendDRMMessage() failed because user consent is
needed for that action.

5 Unknown DRM
system

sendDRMMessage() failed, because the specified
DRM System in DRMSystemId is unknown

6 Wrong Format sendDRMMessage() failed, because the specified
message in msg has a wrong format.

function onDRMSystemMessage(String msg, String DRMSystemID)

The function that is called when the underlying DRM system has a message to report to the current
HTML document.

The specified function is called with two arguments msg and DRMSystemID which are defined as

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 96 (289)

follows:

• String msg – DRM system specific message.

• String DRMSystemID – argument that specifies the DRM System ID of the DRM system that
generated the event as defined by element DRMSystemID in Table 6 of [META].

7.6.1.2 Methods

String sendDRMMessage(String msgType, String msg, String DRMSystemID)

Description Send message to DRM agent, using a message type as defined by the DRM system.
Returns a unique ID to identify the message, to be passed as ‘msgID’ argument for the
callback function registered through onDRMMessageResult. This is an asynchronous
method. Applications will be notified of the results of the operation via events
dispatched to onDRMMessageResult and corresponding DOM level 2 events.

msgType A globally unique message type as defined by the DRM system,
for example:
 application/vnd.marlin.drm.actiontoken+xml

(i.e. MIME type of Marlin Action Token).

Valid values for the msgType parameter include the MIME types
described in Annex C “DRM messages used in DAE” of [CSP].

Msg The message to be provided to the underlying DRM agent
formatted according to the message type as indicated by attribute
msgType.

Valid format for the msg parameter are message formats
described in Annex C “DRM messages used in DAE” of [CSP].

Arguments

DRMSystemID DRMSystemID as defined by element DRMSystemID in Table 6 of
[META]. For example, for Marlin, the DRMSystemID value is
“urn:dvb:casystemid:19188”.

In the case that attribute “msgType” indicates a CSPG-CI+
message as described in section 4.2.3.4.1.1.2 of [CSP], the
“DRMSystemID” attribute SHALL be specified. Otherwise, the
value may be null.

7.6.1.3 Events
For the intrinsic event “onDRMMessageResult” and “onDRMSystemMessage”, a corresponding DOM level 2 event
SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onDRMMessageResult DRMMessageResult Bubbles: No

Cancelable: No

Context Info: msgID, resultMsg,
resultCode

onDRMSystemMessage DRMSystemMessage Bubbles: No

Cancelable: No

Context Info: DRMSystemID, msg

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 97 (289)

NOTE: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DRMMessageResult event or DRMSystemMessage event during the bubbling or
the capturing phase. The addEventListener() method SHOULD be called on the application/oipfDrmAgent
object itself. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.7 Gateway Discovery and Control APIs
The application/oipfGatewayInfo object SHALL provide the information of the gateway and subsequently
interact with the gateway (e.g. IMS Gateway, Application Gateway, CSPG-CI+ Gateway and CSPG-DTCP Gateway) as
defined in section 4.2. The OITF SHALL support the gateway discovery and control though the use of the following non-
visual embedded object:

<object id=”gatewayinfo” type=”application/oipfGatewayInfo”>

Access to the functionality of the application/oipfGatewayInfo embedded object is privileged and SHALL
adhere to the security requirements defined in section 10.1.

7.7.1 The application/oipfGatewayInfo embedded object
7.7.1.1 Properties

readonly Boolean isIGDiscovered

readonly property that indicates whether an IMS Gateway is discovered or not.

NOTE: This property was formerly referred to as IGDiscovery.

readonly Boolean isAGDiscovered

readonly property that indicates whether an Application Gateway is discovered or not.

NOTE: This property was formerly referred to as AGDiscovery.

readonly Boolean isCSPGCIPlusDiscovered

readonly property that indicates whether a CSPG-CI+ Gateway is discovered or not.

Note: This property was formerly referred to as cspGatewayDiscovery. The former
cspGatewayDiscovery property is now replaced with isCSPGCIPlusDiscovered for CSPG-CI+
case and isCSPGDTCPDiscovered for CSPG-DTCP case.

readonly Boolean isCSPGDTCPDiscovered

readonly property that indicates whether a CSPG-DTCP Gateway is discovered or not.

Note: This property was formerly referred to as cspGatewayDiscovery. The former
cspGatewayDiscovery property is now replaced with isCSPGCIPlusDiscovered for CSPG-CI+
case and isCSPGDTCPDiscovered for CSPG-DTCP case.

readonly String igURL

readonly property that indicates the base Gateway’s URL for interacting between an OITF and an IMS
Gateway.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 98 (289)

readonly String agURL

readonly property that indicates the base Gateway’s URL for interacting between an OITF and an
Application Gateway.

readonly String cspgDTCPURL

readonly property that indicates the base Gateway’s URL for interacting between an OITF and an
CSPG-DTCP Gateway.

Note: This property was formerly referred to as cspGatewayURL which was relevant for CSPG-DTCP
case only.

Integer interval

read-write property that specifies the periodic interval time(seconds) to discover the gateways. When
the interval property is set, an UPnP Discovery mechanism is executed.

function onDiscoverIG

the function that SHALL be called when an IMS Gateway is discovered or lost by the OITF which uses
a UPnP Discovery mechanism described in [PROT] section 10.1.1.1. The actual status of the gateway
(discovered or not) can be determined by reading the isIGDiscovered property.

The specified function is called with no arguments.

function onDiscoverAG

the function that SHALL be called when an Application Gateway is discovered or lost by the OITF
which uses a UPnP Discovery mechanism described in [PROT] section 10.1.1.2. The actual status of
the gateway (discovered or not) can be determined by reading the isAGDiscovered property.

The specified function is called with no arguments.

function onDiscoverCSPGDTCP

the function that SHALL be called when an CSPG-DTCP Gateway is discovered or lost by the OITF.
The CSPG-DTCP gateway SHALL be discovered using a UPnP Discovery mechanism described in
[PROT] section 10.1.1.3. The actual status of the gateway (discovered or not) can be determined by
reading the isCSPGDTCPDiscovered property.

The specified function is called with no arguments.

Note: This property was formerly referred to as onDiscoverCSPG. The former onDiscoverCSPG
property is now replaced with onDiscoverCSPGCIPlus for CSPG-CI+ case and
onDiscoverCSPGDTCP for CSPG-DTCP case.

readonly Boolean isIGSupported

readonly property that indicates whether an IMS Gateway is supported or not.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 99 (289)

readonly Boolean isAGSupported

readonly property that indicates whether an Application Gateway is supported or not.

readonly Boolean isCSPGCIPlusSupported

readonly property that indicates whether a CSPG-CI+ Gateway is supported or not.

readonly Boolean isCSPGDTCPSupported

readonly property that indicates whether a CSPG-DTCP Gateway is supported or not.

function onDiscoverCSPGCIPlus

the function that SHALL be called when a CSPG-CI+ Gateway is discovered or lost by the OITF
(including any change to the DRM systems supported by that gateway). The CSPG-CI+ Gateway
SHALL be discovered as defined in [CSP]. The actual status of the gateway (discovered or not) can be
determined by reading the isCSPGCIPlusDiscovered property.

The specified function is called with no arguments.

Note: This property was formerly referred to as onDiscoverCSPG. The former onDiscoverCSPG
property is now replaced with onDiscoverCSPGCIPlus for CSPG-CI+ case and
onDiscoverCSPGDTCP for CSPG-DTCP case.

readonly StringCollection CSPGCIPlusDRMType

readonly property that indicates the list of CA System supported by the CSPG-CI+ Gateway under the
form of URN with the DVB CASystemID (16 bit number) in there. Each element of
CSPGCIPlusDRMType shall be signalled by prefixing the decimal number format of CA_System_ID with
"urn:dvb:casystemid:".

7.7.1.2 Methods

Boolean isIGSupportedMethod(String MethodName)

Description Shall return ‘true’ when the IG supports the method named ‘MethodName’. If the
function returns false, it indicates that IG does not support the specified method.

7.7.1.3 Events
For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onDiscoverIG DiscoverIG Bubbles: No

Cancelable: No

onDiscoverAG DiscoverAG Bubbles: No

Cancelable: No

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 100 (289)

onDiscoverCSPGDTCP DiscoverCSPGDTCP Bubbles: No

Cancelable: No

onDiscoverCSPGCIPlus DiscoverCSPGCIPlus Bubbles: No

Cancelable: No

NOTE: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving a DiscoverIG, DiscoverAG, DiscoverCSPGDTCP and
DiscoverCSPGCIPlus event during the bubbling or the capturing phase. Applications that use DOM 2 event handlers
SHALL call the addEventListener() method on the application/oipfGatewayInfo object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.8 Communication Services APIs
If an OITF has indicated support for the control of its Communication Services functionality by a server by stating
<communicationServices>true</communicationServices> as defined in section 9.3.9 in its capability
description, the OITF SHALL support communication services through the use of the following non-visual object:

<object type=”application/oipfCommunicationServices”/>

The Communication Services API provides the necessary JavaScript methods to register new users. It also provides
methods to register users (registerUser), along with the supported feature tags. A method getRegisteredUsers
is also defined to view all the registered users. A method getAllUsers retrieves all users provisioned in the IG. Once
registered it is possible to switch users for using communication services by using method setUser.

A property is defined to view the current user to be used for a service (currentUser).

In order to handle the out-of-session communication services notifications, namely, the new dialogues, there is a method
for subscribing to these events (subscribeNotification). All new dialogues are communicated through a callback
function (onNotification) to the application instance performing the subscription.

The Communication Services APIs apply only to privileged applications and SHALL adhere to the security model as
defined in section 10.

7.8.1 The application/oipfCommunicationServices embedded object
7.8.1.1 Constants

Name Value Use

STATE_REGISTERED 0 Specifies that the user has been successfully
registered (not subscribed to registration
event).

This also represents the state when the
registration event subscription has been
terminated for some reason by network.

STATE_REGISTERED_SUBSCRIPTION_PENDING 1 Indicates that user is registered successfully
but the subscription-state for the registration
event indicates a status of "pending".

STATE_REGISTERED_SUBSCRIPTION_ACTIVE 2 Specifies that the user has been successfully
registered and subscribed to registration
event (i.e. subscription-state for registration
event indicates a status of "active").

STATE_DEREGISTERED 3 Specifies that the user has been successfully
deregistered. This can be result of network
initiated/locally initiated deregistration
request.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 101 (289)

Name Value Use

STATE_FAILURE 4 Represents a failure condition.

7.8.1.2 Properties

function onNotification(String responseHeaders, String msgText,

 Document msgXML)

This function is called on the application which called subscribeNotification when an unsolicited
IMS notification arrives. The application will be notified of all IMS notifications corresponding to any of
the subscribed-to feature tags regardless of which application subscribed to it.

The specified function is called with 3 arguments.

• String responseHeaders – The concatenated list of all HTTP headers, as a single string,
with each header line separated by a U+000D (CR) U+000A (LF) pair excluding the status line.
In absence of HNI-IGI interface, the responseHeaders will be a concatenated list all SIP
headers, as a single string, with each header line separated by a U+000D (CR) U+000A (LF)
pair excluding the status line.

• String msgText – the response entity body as a string, as defined in [XHR].

• Document msgXML – the response entity body as a Document, as defined in [XHR].

Note: this method was formerly named onIMSNotification.

function onNotificationResult(Integer resultMsg)

This function is called with return result from the subscribeNotification method.

This function is not invoked in the case when there is no re-registration as part of
subscribeNotification.

The specified function is called with a single argument – resultMsg.

• Integer resultMsg – result message from performing subscribeNotification method.

Result
message

Description Semantics

0 Successful The action performed by the underlying
functionality was successful.

1 Unknown error The action performed by the underlying
functionality failed because an unspecified
error occurred.

2 Wrong user credentials The user credentials was not accepted by
the server.

3 The user doesn’t exist. The user id doesn’t exist in the local user
table.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 102 (289)

function onRegistrationContextUpdate(String user, Integer state,

 Integer errorCode)

This function is called with return result from the methods registerUser and deRegisterUser. In
addition, the function is also called whenever there is an update to the registration status of specified
user.

The specified function is called with 3 arguments – user, state and errorCode.

• String user – The IMPU of the user.

• Integer state – The current state of the registration as indicated using the constant values
defined in section 7.8.1.1.

• Integer errorCode – In case of STATE_FAILED state, provides more information on reason
for failure.

errorCode Description Semantics

1 Unknown error The action performed by the underlying
functionality failed because an unspecified error
occurred.

2 Wrong user credentials The user credentials was not accepted by the
server. The DAE may request from the user a
new PIN which can then be used to perform a
new registerUser with the provided PIN.

3 The user doesn’t exist. The user id doesn’t exist in the local user table.

readonly UserData currentUser

The current user property represents the public user identity which is being used or shall be used for
HNI-IGI communication. If not set then the default user shall be used or indicated. It shall be set to the
default user if a user has not been explicitly set using the setUser() method.

7.8.1.3 Methods

UserDataCollection getRegisteredUsers()

Description Return all the users that are currently registered with the IG.

Void registerUser(String userId, String pin)

Description This method performs user registration to the network.

Results from this method is sent to the callback method
onRegistrationContextUpdate.

userId The user identifier represents the public user identity or IMPU. Arguments

pin The pin is optional and carries the password to be used towards the IG in
case of HTTP Digest. If pin is not specified then the default user password
shall be used.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 103 (289)

void deRegisterUser(String userId)

Description The indicated user is de-registered. Any sessions that may be open are closed. De-
registration of default user has no effect nor de-registration of any users registered
from a native application in the OITF.

Results from this method is sent to the callback method
onRegistrationContextUpdate.

Arguments userId The user identifier represents the public user identity or IMPU.

UserDataCollection getAllUsers()

Description Return all the users that are currently provisioned in the IG. The first entry in the
collection is the default user. The users are retrieved according to [PROT] section
5.3.6.3, User ID Retrieval for managed network service.

Boolean setUser(String userId)

Description When invoked, any ongoing sessions for the current user shall be closed.

If setUser is unsuccessful due to user not being registered, it is necessary to first
register the user and wait for a successful response to the
onRegistrationContextUpdate callback function.

If the user gets deregistered (either by the local application or by the network), any
ongoing sessions for the user shall be closed .The default user shall be automatically
assumed for all services until overridden again by setUser method.

Argument userId The user identifier represents the public user identity or IMPU.

void subscribeNotification(FeatureTagCollection featureTagCollection,

 Boolean performUserRegistration)

Description This method subscribes for new IMS out-of-session dialogues for the indicated
application for the currently active user. The notification shall be notified using
onNotification callback method.

If the application that made the subscription closes then there is an automatic un-
subscription to new notifications. Otherwise it is possible to perform
unsubscribeNotification.

Any new dialogues shall be notified over the callback method onNotification.

Note: This function was formerly named subscribeIMSNotification.

featureTagCollection The featureTagCollection object of the DAE application.
The featureTag value may have a value of null. This
indicates that all dialogues are reported.

Arguments

performUserRegistration If this is true a new user registration is required.
SHOULD be set to false if it is know that other
applications will be registered shortly

This parameter is ignored in the case when the filtering
of IMS notifications is done locally. In this case, the initial
registration for active user will include all feature tags.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 104 (289)

void unsubscribeNotification()

Description The DAE application calling this method will be de-registered for IMS notifications.
Associated feature tag(s) for the DAE application are removed from the
featureTagCollection object for the user. A re-registration will be performed for the
corresponding user if notifications are not locally filtered.

Results from this method is sent to the callback method onNotificationResult.

Note: This function was formerly named unsubscribeIMSNotification.

7.8.1.4 Events
For the intrinsic event “onNotificationResult” and “onNotification”, corresponding DOM level 2 events
SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event
properties

onNotificationResult NotificationResult Bubbles: No

Cancelable: No

Context Info: resultMsg

onNotification IMSNotification Bubbles: No

Cancelable: No

Context Info: callId,
contact, from, to

onRegistrationContextUpdate RegistrationContextUpdate Bubbles: No

Cancelable: No

Context Info: user,
state, errorCode

7.8.2 Extensions to application/oipfCommunicationServices for presence
and messaging services

If a client has indicated support for the control of its presence and messaging functionality by a server by stating
<presenceMessaging>true</presenceMessaging> as defined in section 9.3.9 in its capability description, the
client SHALL support Communication Services through the use of the following non-visual embedded object:

<object type=”application/oipfCommunicationServices”/>

The presence and messaging API provides for instant messaging, presence and contact list services. The messages can
either be in a chat session using MSRP (see [PROT]) or page mode messages sent without a session. The support of
presence and messaging SHALL follow the OMA specification [PRES], [IM].

The Communication Services API SHALL be supported in combined OITF and IG deployment cases. It MAY be
supported in other deployment cases. The use of the HNI-IGI interface is OPTIONAL between the OITF and IG when
these are co-deployed.

7.8.2.1 Properties

function onIncomingMessage(String fromURI, String msg, Integer cid)

The function that is called when an incoming chat message is received for the active user.

The specified function is called with 3 arguments:

• String fromURI – The sender address of the message.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 105 (289)

• String msg – The text message sent by the remote peer.

• Integer cid – chat session identifier. Chat session identifier, either same as one received
from openSession method or new if session is started by remote peer. Empty identifier if
message is sent without a session.

function onContactStatusChange(String remoteURI, Integer state)

This function is called when status has changed for a contact in the contact list or a user used with the
method subscribeToStatus.

The specified function is called with two arguments:

• String remoteURI – The user address for which the status has changed.

• Integer state – Set to 1 if the user is present, and 0 if not. Other values may be defined in
the future.

function onNewWatcher(String remoteURI)

This function is called when a remote URI is requesting watcher authorization of the local user’s
presentity.

The specified function is called with one argument:

• String remoteURI – The remote user address which requested watcher authorization.

7.8.2.2 Methods

Integer openChatSession(String toURI)

Description Opens a chat session with a remote user.

Returns an integer identifier for the chat session to be used when a message is sent
in the chat session or to match when incoming message is received.

Arguments toURI The address of the remote chat user.

void sendMessageInSession(Integer cid, String msg)

Description Sends a new text message in a chat session. The chat can either be started by the
user by calling the method openChatSession or can be a session received in the
onIncomingMessage callback function.

cid The chat session identifier. Arguments

msg Text message to send.

void closeChatSession(Integer cid)

Description Closes a chat session.

Arguments cid The chat session identifier.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 106 (289)

void sendMessage(String toURI, String msg)

Description Sends a new text message to a remote peer without starting a session.

toURI The address of the remote chat user. Arguments

msg Text message to send.

void setStatus(Integer state)

Description Sets the presence state of the local user.

Arguments state Set to 1 if the user is present, and 0 if not. Other values may be
defined in the future.

void subscribeToStatus(String remoteURI)

Description Subscribe to status for a remote user.

Arguments remoteURI The address of the remote user.

ContactCollection getContacts()

Description Get the users contact list.

void allowContact(String remoteURI)

Description Allows the watcher authorization to subscribe to the local user’s presentity.

Arguments remoteURI The address of the remote user.

void blockContact(String remoteURI)

Description Blocks the watcher authorization to subscribe to the local user’s presentity.

Arguments remoteURI The address of the remote user.

Boolean createContactList(String contactListUri, ContactCollection contacts)

Description Creates a contact list

contactListUri The public user identity or IMPU of the contact list. Arguments

contacts The collection of contact objects representing the members of the
list.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 107 (289)

ContactCollection getContacts(String contactListUri)

Description Get the users in the specified contact list

Arguments contactListUri The public user identity or IMPU of the contact list.

Boolean addToContactList(String contactListUri, Contact member)

Description Updates the specified contact list by adding a new member to that list

contactListUri The public user identity or IMPU of the contact list to be
updated.

Arguments

member The new contact to be added to the list.

Boolean removeFromContactList(String contactListUri, Contact member)

Description Updates the specified contact list by removing specified member from that list

contactListUri The public user identity or IMPU of the contact list to be
updated.

Arguments

member The new contact to be removed from the list

Boolean deleteContactList(String contactListUri)

Description Deletes the specified contact list

Arguments contactListUri The public user identity or IMPU of the contact list to be deleted

void allowAllContacts(String domain)

Description Allows all watchers belonging to specified domain authorization to subscribe to local
user’s presentity. If null, then all contacts will be allowed.

Arguments contactListUriDomain Watchers belonging to this domain are authorized to
subscribe. If null, then all watchers are authorized to
subscribe irrespective of domain.

void blockAllContacts(String domain)

Description Blocks all watchers belonging to specified domain from subscribing to local user’s
presentity. If null, then all contacts will be blocked.

Arguments domain Watchers belonging to this domain are denied authorization to
subscribe. If null, then all watchers are blocked from
subscribing irrespective of domain.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 108 (289)

7.8.2.3 Events
For the intrinsic events “onIncomingMessage” and “onContactStatusChange” and “onNewWatcher”,
corresponding DOM level 2 events SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onIncomingMessage IncomingMessage Bubbles: No

Cancelable: No

Context Info: fromURI, msg, cid

onContactStatusChange ContactStatusChange Bubbles: No

Cancelable: No

Context Info: remoteURI,
present

onNewWatcher NewWatcher Bubbles: No

Cancelable: No

Context Info: remoteURI

7.8.3 The UserData class
7.8.3.1 Properties

readonly String userId

The user identifier represents the public user identity or IMPU.

readonly FeatureTagCollection featureTags

The feature tag data is optional. It carries a collection of feature tag objects associated with an
application. For example the feature tag may be an ICSI or IARI or a feature tag identifying the service
for. an incoming instant messages. The object includes feature tags related to both DAE and native
applications in OITF.

readonly String friendlyName

The friendly name for the user. Used as display name in outgoing messages.

7.8.4 The UserDataCollection class
The UserDataCollection object represents a list of users. Next to the properties and methods defined below a
UserDataCollection Object SHALL support the array notation to access the UserData objects in this collection

7.8.4.1 Properties

readonly Integer length

The number of items in the collection.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 109 (289)

7.8.4.2 Methods

UserData item(Integer index)

Description Return the item at position index in the list, or undefined if no item is present at that
position.

The position can also be specified using array bracket notation instead of calling this
method directly.

Arguments index The index of the item to be retrieved

7.8.5 The FeatureTag class
7.8.5.1 Properties

readonly String featureTag

A string containing a featureTag value associated to an application. The featureTag value may have a
value of null when used with the subscribeNotification () method on the
application/oipfCommunicationServices object. This indicates that all dialogues are reported.

The feature tag SHALL populate the X-OITF- headers as specified in [TISPAN] section 5.6.2, [IM],
[3GPP TS 24.229], [RFC3840] and [RFC3841].

7.8.6 The FeatureTagCollection class
The FeatureTagCollection object represents a list of features associated to the user. Next to the properties and
methods defined below a FeatureTagCollection Object SHALL support the array notation to access the features
associated to the user in this collection

7.8.6.1 Properties

readonly Integer length

The number of items in the collection.

7.8.6.2 Methods

FeatureTag item(Integer index)

Description Return the item at position index in the list, or undefined if no item is present at that
position.

The position can also be specified using array bracket notation instead of calling this
method directly.

Arguments index The index of the item to be retrieved.

7.8.7 The Contact class
7.8.7.1 Properties

String contactId

The contact identifier represents the public user identity or IMPU used in communication with the
contact.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 110 (289)

String friendlyName

The friendly name for the user. Used as display name in outgoing messages.

7.8.8 The ContactCollection class
The ContactCollection object represents a read-only list of contacts in the users IMS contact list. Next to the
properties and methods defined below a ContactCollection Object SHALL support the array notation to access the
Contact objects in this collection

7.8.8.1 Properties

readonly Integer length

The number of items in the collection.

7.8.8.2 Methods

Contact item(Integer index)

Description Return the item at position index in the list, or undefined if no item is present at that
position.

The position can also be specified using array bracket notation instead of calling this
method directly.

Arguments index The index of the item to be retrieved.

Boolean remove(String contactId)

Description Removes the contact represented by contactId from the users IMS contact list.

Returns true on success.

Arguments contactId Contact identifier of the user in the IMS contact list.

Boolean add(Contact contact)

Description Adds the contact represented by the Contact object to the users IMS contact list.

Returns true on success.

Arguments contact Contact object to be added from users IMS contact list.

7.9 Parental rating and parental control APIs
This section defines APIs related to parental ratings and parental control.

Sections 7.9.1 through 7.9.3 define a new JavaScript embedded object
“application/oipfParentalControlManager” and the related ParentalRatingScheme and
ParentalRatingSchemeCollection objects, which allows applications to construct a new parental rating scheme
(and a parental rating value using that scheme), and to temporarily enable or disable viewing of a content item. These
APIs SHALL be supported if an OITF supports parental controls as indicated by value “true” for element
<parentalcontrol> (as defined by section 9.3.5) in its capability profile.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 111 (289)

Sections 7.9.4 and 7.9.5 define the ParentalRating and ParentalRatingCollection objects. These objects are
used/referenced by various other objects, such as the Programme object as defined in section 7.16.2 to indicate a
particular parental rating. The support for these objects depends on the support for the sections in which these are used.

7.9.1 The application/oipfParentalControlManager embedded object
If an OITF supports parental controls as indicated by value “true” for element <parentalcontrol> (as defined by
section 9.3.5) in its capability profile, the OITF SHALL support the
application/oipfParentalControlManager object with the following interface

The following example shows a possible usage scenario for the application/oipfParentalControlManager,
i.e. to add a new parental rating scheme to the parentalRatingSchemes collection:

//get a reference to the parental control manager object
var pcManager = document.getElementById(“pcmanager”);

// add a new rating scheme – in this case, the MPAA rating scheme
pcManager.parentalRatingSchemes.addParentalRatingScheme(
 “urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001”, “G,PG,PG-13,R,NC-17,NR”);

The following example shows a possible usage scenario for the
application/oipfParentalControlManager, i.e. to temporarily unblock a blocked
content item (e.g. after asking the user to enter the parental control pin):
// If a content item is blocked, the event “onParentalRatingChange” can be captured, and
// the setParentalControlStatus() method can be used to temporarily unblock the content
// (e.g. after asking the user to enter the parental control pin)

function askForPin() { … }

...

//get a reference to the A/V player object
var avPlayer = document.getElementById(“avPlayer”);

avPlayer.onParentalRatingChange = function() {var
pin=askForPin();pcManager.setParentalControlStatus(pin, false)};

7.9.1.1 Properties

readonly ParentalRatingSchemeCollection parentalRatingSchemes

A reference to the collection of rating schemes known by the OITF.

readonly Boolean isPINEntryLocked

The lockout status of the parental control PIN. If the incorrect PIN has been entered too many times in
the configured timeout period, parental control PIN entry SHALL be locked out for a period of time
determined by the OITF.

7.9.1.2 Methods

Integer setParentalControlStatus(String pcPIN, Boolean enable)

Description As defined in [CSP], the OITF shall prevent the consumption of a programme when
its parental rating doesn't meet the parental rating criterion currently defined in the
OITF. Calling this method with enable set to false will temporarily allow the
consumption of any blocked programme.

Setting the parental control status using this method SHALL set the status until the
consumption of any of all the blocked programmes terminates (e.g. until the content
item being played is changed), or another call to the
setParentalControlStatus() method is made.

Setting the parental control status using this method has the following effect :for the
Programme and Channel objects as defined in sections 7.16.2 and 7.13.11, the
blocked property of a programme or channel SHALL be set to true for programmes
whose parental rating does not meet the applicable parental rating criterion, but the

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 112 (289)

locked property SHALL be set to false.

This operation to temporarily disable parental rating control SHALL be protected by
the parental control PIN (i.e. through attribute pcPIN). The return value indicates the
success of the operation, and SHALL take one of the following values:

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too many
times. The number of invalid PIN attempts before PIN entry is locked is
outside the scope of this specification.

pcPIN The parental control PIN. Arguments

enable Flag indicating whether parental control should be enabled.

Boolean getParentalControlStatus()

Description Returns a flag indicating the temporary parental control status set by
setParentalControlStatus(). Note that the returned status covers parental
control functionality related to all rating schemes, not only the rating scheme upon
which the method is called.

Boolean getBlockUnrated()

Description Returns a flag indicating whether or not the OITF has been configured by the user to
block content for which a parental rating is absent.

Integer setParentalControlPIN(String oldPcPIN, String newPcPIN)

Description Set the parental control PIN.

This operation SHALL be protected by the parental control PIN (if PIN entry is
enabled). The return value indicates the success of the operation, and SHALL take
one of the following values:

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too many
times. The number of invalid PIN attempts before PIN entry is locked is
outside the scope of this specification.

oldPcPIN The current parental control PIN. Arguments

newPcPIN The new value for the parental control PIN.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 113 (289)

Integer unlockWithParentalControlPIN(String pcPIN, Object target)

Description Unlock the object specified by target for viewing if pcPIN contains the correct
parental control PIN.

The object type of target can be one of the following:

• Channel object, in which case the broadcast channel currently being
presented SHALL be unlocked as long as the ccid of the object matches the
broadcast channel. If the channel object does not match the broadcast
channel, an Invalid Object error SHALL be returned. The channel SHALL
remain unlocked until the broadcast video channel is changed to a different
one or has stopped being presented (e.g. the OITF being powered off or put
in standby).

• video/broadcast object, in which case the content being presented
through this object SHALL be unlocked until a new channel is selected.

• A/V control object, in which case the content being presented through this
object SHALL be unlocked until a new item of content is played using this
object

Otherwise an Invalid Object error SHALL be returned.

The return value indicates the success of the operation, and SHALL take the
following values:

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too
many times. The number of invalid PIN attempts before PIN entry
is locked is outside the scope of this specification.

3 Invalid object.

pcPIN The parental control PIN. Arguments

target

The object to be unlocked. The value of this parameter SHALL be
an instance of one of the following classes: Channel, Programme,
Recording, CODAsset, or Download. If the value of this parameter
is not an instance of one of these classes, a TypeError exception
SHALL be thrown.

Integer verifyParentalControlPIN(String pcPIN)

Description Verify that the PIN specified by pcPIN is the correct parental control PIN.

This method will return one of the following values:

Value Description

0 The PIN is correct.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 114 (289)

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too
many times. The number of invalid PIN attempts before PIN entry
is locked is outside the scope of this specification.

Arguments pcPIN The parental control PIN to be verified.

Integer setBlockUnrated(String pcPIN, Boolean block)

Description Set whether programmes for which no parental rating has been retrieved from the
metadata client nor defined by the service provider should be blocked automatically
by the terminal.

This operation SHALL be protected by the parental control PIN (if PIN entry is
enabled). The return value indicates the success of the operation, and SHALL take
one of the following values:

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too
many times. The number of invalid PIN attempts before PIN entry
is locked is outside the scope of this specification.

pcPIN The parental control PIN. Arguments

block Flag indicating whether programmes SHALL be blocked.

7.9.2 The ParentalRatingScheme class
A ParentalRatingScheme describes a single parental rating scheme that may be in use for rating content, e.g. the
MPAA or BBFC rating schemes. It is a collection of strings representing rating values, which next to the properties and
methods defined below SHALL support the array notation to access the rating values in this collection. For the natively
OITF supported parental rating systems the values SHALL be ordered by the OITF to allow the rating values to be
compared in the manner as defined for property threshold for the respective parental rating system. Using a threshold
as defined in this API may not necessary be the proper way in which parental rating filtering is applied on the OITF, e.g.
the US FCC requirements take precedence for device to be imported to the US.

The parental rating schemes supported by a receiver MAY vary between deployments.

7.9.2.1 Properties

readonly String name

The unique name that identifies the parental rating scheme. Valid strings include:

• the URI of one of the MPEG-7 classification schemes representing a parental rating scheme as
defined by the “uri” attribute of one of the parental rating <ClassificationScheme> elements
in [MPEG-7].

• the string value ”urn:oipf:GermanyFSKCS” to represent the GermanyFSK rating scheme as

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 115 (289)

defined in [META].

 the string value “dvb-si”: this means that the scheme of a minimum recommended age
encoded as per [EN300468], is used to represent the parental rating values.

If the value of “name” is “dvb-si”, the ParentalRatingScheme remains empty (i.e.
ParentalRatingScheme.length == 0).

readonly Integer length

The number of values in the rating scheme. ParentalRatingScheme object. If the value of the
ParentalRatingScheme “name” attribute is “dvb-si”, the length SHALL be 0.

readonly ParentalRating threshold

The parental rating threshold that is currently in use by the OITF’s parental control system for this rating
scheme, which is encoded as a ParentalRating object in the following manner:

If the value of the “name” property of the ParentalRatingScheme object is unequal to “dvb-si”, then:

• the “value” property of the threshold object represents the value for which items with a
ParentalRating.value greater or equal to the “value” property of the threshold object have
been configured by the OITF’s parental control subsystem to be blocked.

• the “labels” property of the threshold object represents the bit map of zero or more flags for
which items with a ParentalRating.labels property with the same flags set have been
configured by the OITF’s parental control subsystem to be blocked.

If the value of name property of the ParentalRatingScheme object is “dvb-si”, the threshold indicates
a minimum recommended age encoded as per [EN300468] at which or above which the content is
being blocked by the OITF’s parental control subsystem

Note that the value property as an index into the ParentalRating object that defines the threshold
can be 1 larger than the length of ParentalRatingScheme.length to convey that no content is being
blocked by the parental control subsystem.

7.9.2.2 Methods

Integer indexOf(String ratingValue)

Description Return the index of the rating represented by attribute ratingValue inside the
parental rating scheme string collection, or -1 if the rating value cannot be found in
the collection.

Arguments ratingValue The case-insensitive string representation of a parental rating
value. See property name in section 7.9.1.1 for more information
about possible values.

String item(Integer index)

Description Return the string representation of the rating at index in the rating scheme, or
undefined if no item is present at that position.

Arguments index The index of the parental rating.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 116 (289)

String iconUri(Integer index)

Description Return the URI of the icon representing the rating at index in the rating scheme, or
undefined if no item is present at that position. If no icon is available, this method
SHALL return null.

Arguments index The index of the parental rating scheme.

7.9.3 The ParentalRatingSchemeCollection class
A ParentalRatingSchemeCollection represents a collection of parental rating schemes, e.g. as returned by property
parentalRatingSchemes of the “application/oipfParentalControlmanager” object as defined in section
7.9.1. Next to the properties and methods defined below a ParentalRatingSchemeCollection object SHALL
support the array notation to access the parental rating scheme objects in this collection.

7.9.3.1 Properties

readonly Integer length

The number of items in the collection.

7.9.3.2 Methods

ParentalRatingScheme item(Integer index)

Description Return the item at position index in the list, or undefined if no item is present at that
position.

Arguments index The index of the parental rating.

ParentalRatingScheme addParentalRatingScheme(String name, String values)

Description Create a new ParentalRatingScheme object and adds it to the
ParentalRatingSchemeCollection. Applications MAY use this method to register
additional parental rating schemes with the platform. When registered, the new
parental rating scheme SHALL (temporarily) be accessible through the
parentalRatingSchemes property of the
“application/oipfParentalControlmanager” object as defined in section 7.9.1.

The application SHALL make sure that the values are ordered in such a way to allow
the rating values to be compared in the manner as defined for property “threshold”
for the respective parental rating system.

This method returns a reference to the ParentalRatingScheme object representing
the added scheme. If the value of the name parameter corresponds to an already-
registered rating scheme, this method returns a reference to the existing
ParentalRatingScheme object. If the newly defined rating scheme was not known
to the OITF, the scheme MAY be stored persistently, and the OITF may offer a UI to
set the parental rating blocking criteria for the newly added parental rating scheme.

If the OITF has successfully stored (persistently or not persistently) the additional
parental rating scheme, the method SHALL return a non-null
ParentalRatingScheme object.

Arguments name A unique string identifying the parental rating scheme to which this
value refers. See property name in section 7.9.1.1 for more
information about possible values.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 117 (289)

values A comma-separated list of the possible values in the rating
scheme, in ascending order of severity. In case the rating scheme
is one of the [MPEG-7] rating classification schemes, this means
that the list of parental rating values contains the values as
specified by the <Name> elements of the <Term> elements in the
order of appearance as they are defined for the classification
scheme, with the exception of the Internet Content Rating
Association (ICRA) based ratings, for which the reverse order has
to be applied. The values must be ordered in such a way to allow
the rating values to be compared in the manner as defined for
property threshold for the respective parental rating system.

ParentalRatingScheme getParentalRatingScheme(String name)

Description This method returns a reference to the ParentalRatingScheme object that is
associated with the given scheme as specified through parameter “name”. If the value
of name does not corresponds to the name property of any of the
ParentalRatingScheme objects in the ParentalRatingSchemeCollection, the
method SHALL return undefined.

Arguments name The unique name identifying a parental rating scheme.

7.9.4 The ParentalRating class
A ParentalRating object describes a parental rating value for a programme or channel. The ParentalRating
object identifies both the rating scheme in use, and the parental rating value within that scheme.

In case of a BCG the values of the properties in this object will be read from the ParentalGuidance element that is
the child of a programme’s BCG description.

Example usage:
<!-- This example shows a possible usage scenario for the ParentalRating
 datastructure, i.e. to create a new programme to record and set
 parental rating to MPAA parental rating to PG-13.
-->
...
<script type="text/javascript" language="JavaScript1.5">

// get a reference to the recorder object
var recorder = document.getElementById("recorder");

// create new programme to record
var myProgramme = recorder.createProgrammeObject();

// add a new parental rating value to myProgramme, in this case the
// programme is rated PG-13 for the US using the MPAA Parental rating scheme.
myProgramme.parentalRatings.addParentalRating(
 "urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001", ”PG-13”, 2, 0, “US”
);

</script>
...
<object id="recorder" type="application/oipfRecordingScheduler"/>

7.9.4.1 Properties

readonly String name

The case-insensitive string representation of the parental rating value for the respective rating scheme
denoted by property scheme.

Valid strings include:

• if the value of property scheme represents one of the parental rating classification scheme
names identified by [MPEG-7]: the string representation of one of the parental rating values as

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 118 (289)

defined by one of the <Name> elements.

• if the value of property scheme is ”urn:oipf:GermanyFSKCS” , the string representation of
one the values for the GermanyFSK rating scheme as defined in [META].

• if the value of property scheme is equal to “dvb-si”, the string representation of the minimum
recommended age encoded as per [EN300468], which corresponds to rating_type 0 in
[IEC62455].

An example of a valid parental rating value is “PG-13”.

readonly String scheme

Unique case-insensitive name identifying the parental rating guidance scheme to which this parental
rating value refers. Valid strings include:

• the URI of one of the MPEG-7 classification schemes representing a parental rating scheme as
defined by the “uri” attribute of one of the parental rating <ClassificationScheme> elements in
[MPEG-7]

• the string value ”urn:oipf:GermanyFSKCS” to represent the GermanyFSK rating scheme as
defined in [META].

• the string value “dvb-si”: this means that the scheme of a minimum recommended age
encoded as per [EN300468], is used to represent the parental rating values.

readonly Integer value

The parental rating value represented as an index into the set of values defined as part of the
ParentalRatingScheme identified through property “scheme”.

If an associated ParentalRatingScheme object can be found by calling method
getParentalRatingScheme() on property parentalRatingSchemes of the
application/oipfParentalControlManager object and the value of property scheme is not equal
to ”dvb-si”, then the value property SHALL represent the index of the parental rating value inside the
ParentalRatingScheme object, or -1 if the value cannot be found. If the value of property scheme is
equal to ”dvb-si”, then this property SHALL be the integer representation of the string value of
ParentalRating property name.

If no associated ParentalRatingScheme object can be found by calling method
getParentalRatingScheme on property parentalRatingSchemes of the
application/oipfParentalControlManager object, then the value property SHALL have value
undefined.

readonly Integer labels

The labels property represents a set of parental advisory flags that may provide additional information
about the rating.

The value of this field is a 32 bit integer value that represents a binary mask corresponding to the sum
of zero or more label values defined in the table below. If no labels have been explicitly set, the value
for the “labels” property SHALL be 0.

Valid labels include:

Value Binary representation
(most significant 16 bits) Description

1 00000000 00000001 Indicates that a content item features sexual suggestive
dialog.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 119 (289)

2 00000000 00000010 Indicates that a content item features strong language.

4 00000000 00000100 Indicates that a content item features sexual situations.

8 00000000 00001000 Indicates that a content item features violence.

16 00000000 00010000 Indicates that a content item features fantasy violence.

32 00000000 00100000 Indicates that a content item features disturbing scenes.

64 00000000 01000000 Indicates that a content item features portrayals of
discrimination.

128 00000000 10000000 Indicates that a content item features scenes of illegal drug
use.

256 00000001 00000000 Indicates that a content item features strobing that could
impact viewers suffering from Photosensitive epilepsy

readonly String region

The region to which the parental rating value applies as case-insensitive alpha-2 region code as
defined in ISO 3166-1. Returns undefined if no specific region has been defined.

7.9.5 The ParentalRatingCollection class
A ParentalRatingCollection represents a collection of parental rating values. Next to the properties and methods
defined below a ParentalRatingCollection object SHALL support the array notation to access the parental rating
objects in this collection.

7.9.5.1 Properties

readonly Integer length

The number of items in the collection.

7.9.5.2 Methods

ParentalRating item(Integer index)

Description Return the item at position index in the list, or undefined if no item is present at that
position.

Arguments index The index of the parental rating.

void addParentalRating(String scheme, String name, Integer value,

 Integer labels, String region)

Description Creates a ParentalRating object instance for a given parental rating scheme and
parental rating value, and adds it to the ParentalRatingCollection for a
programme or channel.

Arguments scheme A unique string identifying the parental rating scheme to which this
value refers. See property “scheme” in section 7.9.4.1 for more

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 120 (289)

information about possible values.

name A case-insensitive string representation of the parental rating
value. See property “name” in section 7.9.4.1 for more information
about possible values.

value The parental rating value represented as an Integer. See property
“value” in section 7.9.4.1 for more information about possible
values.

labels A set of content rating labels that may provide additional
information about the rating. See property “labels” in section
7.9.4.1 for more information about possible values.

region The region to which the parental rating value applies as case-
insensitive alpha-2 region code as defined in ISO 3166-1. Value
must be null or undefined if no specific region has been
identified.

7.10 Scheduled Recording APIs
This section describes the APIs needed to support control by a DAE application of the recording (PVR) functionality
available to an OITF, including time-shift support, scheduled recording and storage of basic metadata about recorded
items. Changes made by a DAE application to properties that can also be set by the OITF may be overwritten by the
OITF from metadata without warning.

This section SHALL apply for OITFs that have indicated <recording> with value “true” as defined in section
9.3.3 in its capability description.

7.10.1 The application/oipfRecordingScheduler embedded object
The OITF SHALL support the scheduling of recordings of broadcasts through the use of the following non-visual
embedded object:

<object type=“application/oipfRecordingScheduler”/>

Note that the functionality in this section SHALL adhere to the security model as specified in section 10.1.

7.10.1.1 Methods

ScheduledRecording record(Programme programme)

Description Requests the scheduler to schedule the recording of the programme identified by the
programmeID property of the programme. The other data contained in the programme
object is used solely for annotation of the (scheduled) recording. If such programme
metadata is provided, it is retained in the ScheduledRecording object that is
returned if the recording of the programme was scheduled successfully, reflecting the
possibility that not all relevant metadata might be available to the scheduler. If the
recording could not be scheduled due to a scheduling conflict or lack of resources the
value null is returned.

Note that the actual implementation of this method should enable the scheduler to
identify the domain of the service that issues the scheduling request in order to support
future retrieval of the scheduled recording through the getScheduledRecordings
method.

Arguments programme The programme to be recorded, as defined in section
7.16.2.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 121 (289)

ScheduledRecording recordAt(Integer startTime, Integer duration,

 Integer repeatDays, String channelID)

Description Requests the scheduler to schedule the recording of the broadcast to be received over
the channel identified by channelID, starting at startTime and stopping at
startTime + duration. If the recording was scheduled successfully, the resulting
ScheduledRecording object is returned. If the recording could not be scheduled due
to a scheduling conflict or lack of resources the value null is returned.

The OITF SHOULD associate metadata with recordings scheduled using this method.
This metadata MAY be obtained from the broadcast being recorded (for example DVB-
SI in an MPEG-2 transport stream) or from other sources of metadata. If an application
anticipates that the OITF may not be able to obtain any metadata, it SHOULD instead
of using this method;

• create a Programme object (using the createProgramme() method)
containing the channelID, startTime and duration

• populate that Programme object with metadata

• pass that Programme object to the record(Programme) method.

Note that the actual implementation of this method should enable the scheduler to
identify the domain of the service that issues the scheduling request in order to support
future retrieval of the scheduled recording through the getScheduledRecordings
method.

startTime The start of the time period of the recording measured in seconds
since midnight (GMT) on 1/1/1970. If the start time occurs in the past
and the current time is within the specified duration of the recording,
the OITF SHALL start recording immediately and MAY record any
earlier content from the current programme that is available (e.g.
stored in a time-shift buffer).

duration The duration of the recording in seconds.

repeatDays Bitfield indicating which days of the week the recording SHOULD be
repeated. Values are as follows:

Day Bitfield Value

Sunday 0x01 (i.e. 00000001)

Monday 0x02 (i.e. 00000010)

Tuesday 0x04 (i.e. 00000100)

Wednesday 0x08 (i.e. 00001000)

Thursday 0x10 (i.e. 00010000)

Friday 0x20 (i.e. 00100000)

Saturday 0x40 (i.e. 01000000)

These bitfield values can be ‘OR’-ed together to repeat a recording on
more than one day of a week (e.g. weekdays)

A value of 0x00 indicates that the recording will not be repeated.

Arguments

channelID The identifier of the channel from which the broadcasted content is to
be recorded. Specifies either a ccid or ipBroadcastID (as defined by

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 122 (289)

the Channel object in section 7.13.11)

ScheduledRecordingCollection getScheduledRecordings()

Description Returns a subset of all the recordings that are scheduled but which have not yet
started. The subset SHALL include only scheduled recordings that were scheduled
using a service from the same FQDN as the domain of the service that calls the
method.

ChannelConfig getChannelConfig()

Description Returns the channel line-up of the OITF in the form of a ChannelConfig object as
defined in section 7.13.9. The ChannelConfig object returned from this function
SHALL be identical to the ChannelConfig object returned from the
getChannelConfig() method on the video/broadcast object as defined in section
7.13.1.3.

void remove(ScheduledRecording recording)

Description Remove a recording (either scheduled, in-progress or completed).

For non-privileged applications, recordings SHALL only be removed when they are
scheduled but not yet started and the recording was scheduled by the current service.

As with the record method, only the programmeID property of the scheduled recording
SHALL be used to identify the scheduled recording to remove where this property is
available. The other data contained in the scheduled recording SHALL NOT be used
when removing a recording scheduled using methods other than recordAt(). For
recordings scheduled using recordAt(), the data used to identify the recording to
remove is implementation dependent.

If an A/V control object is presenting the indicated recording then the state of the A/V
Control object SHALL be automatically changed to 6 (the error state).

Arguments recording The scheduled recording to be removed.

Programme createProgrammeObject()

Description Factory method to create an instance of Programme

7.10.2 The ScheduledRecording class
The ScheduledRecording object represents a scheduled programme in the system, i.e. a recording that is scheduled
but which has not yet started. . The values of the properties of a ScheduledRecording (except for startPadding
and endPadding) are provided when the object is created using one of the record() methods in section 7.10.1, for
example by using a corresponding Programme object as argument for the record() method, and can not be changed
for this scheduled recording object (except for startPadding and endPadding).

7.10.2.1 Constants
The following table lists the constants for recording states.

Name Use

RECORDING_SCHEDULED Recording has been newly scheduled.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 123 (289)

RECORDING_REC_STARTED Recording has started.

RECORDING_REC_COMPLETED Recording has successfully completed.

RECORDING_REC_PARTIALLY_COMPLETED The recording has only partially completed due to
insufficient storage space, a clash or hardware failure.

There are three possible conditions for this:

1) The end of the recording is missed.

2) The start of the recording is missed.

3) A piece from the centre of the recording is missed
(e.g. due to the receiver rebooting or a transient failure
of the network connection).

RECORDING_ERROR An error has been encountered. Refer to detailed error
codes for details on the error.

This specification does not define values for these constants. Implementations may use any values as long as the value of
each constant is unique.

The following table lists the constants for detailed error codes when a recording failed to complete.

Name Use

ERROR_REC_RESOURCE_LIMITATION The recording sub -system is unable to record due to
resource limitations.

ERROR_INSUFFICIENT_STORAGE There is insufficient storage space available. (Some of
the recording may be available).

ERROR_REC_UNKNOWN Recording has stopped before completion due to
unknown (probably hardware) failure.

This specification does not define values for these constants. Implementations may use any values as long as the value of
each constant is unique.

The following table lists the constants for programme ID types.

Name Value Use

ID_TVA_CRID 0 Used in the programmeIDType property to indicate that the programme is
identified by its TV-Anytime CRID (Content Reference Identifier).

ID_DVB_EVENT 1 Used in the programmeIDType property to indicate that the programme is
identified by a DVB URL referencing a DVB-SI event as enabled by section
4.1.3 of [META]. Support for this constant is OPTIONAL.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 124 (289)

7.10.2.2 Properties

readonly Integer state

The state of the recording. Valid values are:
RECORDING_REC_STARTED

RECORDING_REC_COMPLETED

RECORDING_REC_PARTIALLY_COMPLETED

RECORDING_SCHEDULED

RECORDING ERROR

readonly Integer error

If the state of the recording has changed due to an error, this field contains an error code detailing the
type of error. This is only valid if the value of the state argument is RECORDING ERROR or
RECORDING_REC_PARTIALLY_COMPLETED otherwise this property SHALL be null. Valid values are:
ERROR_REC_RESOURCE_LIMITATION

ERROR_INSUFFICIENT_STORAGE

ERROR_REC_UNKNOWN

readonly String scheduleID

An identifier for this scheduled recording. This value SHALL be unique to this scheduled recording. For
a recording object this identifier can be used to associate which scheduled recording object this
recording was created from.

Integer startPadding

The amount of padding to add at the start of a scheduled recording, in seconds. If the value of this
property is undefined, an OITF defined start padding will be used. The default OITF defined start
padding MAY be changed through property pvrStartPadding of the Configuration class as
defined in section 7.3.2. When a recording is due to start, the OITF MAY use a smaller amount of
padding in order to avoid conflicts with other recordings.

Positive values of this property SHALL cause the recording to start earlier than the specified start time
(i.e. the actual duration of the recording shall be increased); negative values SHALL cause the
recording to start later than the specified start time (i.e. the actual duration of the recording shall be
decreased).

Integer endPadding

The amount of padding to add at the end of a scheduled recording, in seconds. If the value of this
property is undefined, an OITF defined end padding will be used. . The default OITF defined end
padding MAY be changed through property pvrEndPadding of the Configuration class as defined
in section 7.3.2. When a recording is in progress, the OITF MAY use a smaller amount of padding in
order to avoid conflicts with other recordings.

Positive values of this property SHALL cause the recording to end later than the specified end time (i.e.
the actual duration of the recording shall be increased); negative values SHALL cause the recording to
end earlier than the specified end time (i.e. the actual duration of the recording shall be decreased).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 125 (289)

readonly Integer repeatDays

Bitfield indicating which days of the week the recording SHOULD be repeated. Values are as follows:

Day Bitfield Value

Sunday 0x01 (i.e. 00000001)

Monday 0x02 (i.e. 00000010)

Tuesday 0x04 (i.e. 00000100)

Wednesday 0x08 (i.e. 00001000)

Thursday 0x10 (i.e. 00010000)

Friday 0x20 (i.e. 00100000)

Saturday 0x40 (i.e. 01000000)

These bitfield values can be ‘OR’-ed together to repeat a recording on more than one day of a week
(e.g. weekdays)

A value of 0x00 indicates that the recording will not be repeated.

String name

The short name of the scheduled recording, e.g. 'Star Trek: DS9'.

String longName

The long name of the scheduled recording, e.g. 'Star Trek: Deep Space Nine'. If the long name is not
available, this property will be undefined.

String description

The description of the scheduled recording, e.g. an episode synopsis. If no description is available, this
property will be undefined.

String longDescription

The long description of the programme. If no description is available, this property will be undefined.

readonly Integer startTime

The start time of the scheduled recording, measured in seconds since midnight (GMT) on 1/1/1970.
The value for the startPadding property can be used to indicate if the recording has to be started
before the startTime (as defined by the Programme class).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 126 (289)

readonly Integer duration

The duration of the scheduled recording (in seconds). The value for the endPadding property can be
used to indicate how long the recording has to be continued after the specified duration of the
recording.

readonly Channel channel

Reference to the broadcast channel where the scheduled programme is available.

readonly Boolean isManual

true if the recording was scheduled using oipfRecordingScheduler.recordAt() or using a
terminal-specific approach that does not use guide data to determine what to record, false otherwise.

If false, then any fields whose name matches a field in the Programme object contains details from the
programme guide on the programme that has been recorded.

readonly String programmeID

The unique identifier of the scheduled programme or series, e.g. a TV-Anytime CRID (Content
Reference Identifier). For recordings scheduled using the oipfRecordingScheduler.recordAt()
method, the value of this property MAY be undefined.

readonly Integer programmeIDType

The type of identification used to reference the programme, as indicated by one of the ID_* constants
defined in section 7.10.2.1. For recordings scheduled using the
oipfRecordingScheduler.recordAt() method, the value of this property MAY be undefined.

readonly Integer episode

The episode number for the programme if it is part of a series. This property is undefined when the
programme is not part of a series or the information is not available.

readonly Integer totalEpisodes

If the programme is part of a series, the total number of episodes in the series. This property is
undefined when the programme is not part of a series or the information is not available.

readonly ParentalRatingCollection parentalRatings

A collection of parental rating values for the programme for zero or more parental rating schemes
supported by the OITF. The value of this property is typically provided by a corresponding
“Programme” object that is used to schedule the recording and can not be changed for this scheduled
recording object. If no parental rating information is available for this scheduled recording, this property
is a ParentalRatingCollection object (as defined in section 7.9.5) with length 0.

Note that if the parentalRating property contains a certain parental rating (e.g. PG-13) and the
broadcast channel associated with this scheduled recording has metadata that says that the content is

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 127 (289)

rated PG-16, then the conflict resolution is implementation dependent.

Note that this property was formerly called “parentalRating” (singular not plural).

7.10.3 The ScheduledRecordingCollection class
A ScheduledRecordingCollection object represents a read-only list of recordings in the system. A collection
MAY contain ScheduledRecording objects, Recording objects, or a combination of the two. Next to the properties
and methods defined below a ScheduledRecordingCollection Object SHALL support the array notation to
access the scheduled recordings in this collection .

7.10.3.1 Properties

readonly Integer length

The number of items in the collection.

7.10.3.2 Methods

ScheduledRecording item(Integer index)

Description Return the item at position index in the list, or undefined if no item is present at that
position.

The position can also be specified using array bracket notation instead of calling this
method directly.

Arguments index The index of the item to be retrieved.

7.10.4 Extension to application/oipfRecordingScheduler for control of
recordings

The OITF SHALL support the following extensions to the application/oipfRecordingScheduler object
defined in section 7.10.1.

This subsection SHALL apply for OITFs that have indicated support for the extended PVR management functionality by
adding the attribute 'manageRecordings = true' to the <recording> element in the client capability description
as defined in section 9.3.3

The functionality as described in this section is subject to the security model of section 10.

7.10.4.1 Properties

readonly ScheduledRecordingCollection recordings

Provides a list of scheduled and recorded programmes in the system. This property may only provide
access to a subset of the full list of recordings, as determined by the value of the manageRecordings
attribute of the <recording> element in the client capability description (see section 9.3.3).

readonly DiscInfo discInfo

Get information about the status of the local storage device. The DiscInfo class is defined in section
7.16.4.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 128 (289)

function onPVREvent(Integer state, ScheduledRecording recording)

This function is the DOM 0 event handler for notification of changes in the state of recordings. The
specified function is called with the following arguments:

• Integer state – The current state of the recording. One of:

Value Description

1 The recording has started.

2 The recording has stopped, having completed.

3 The recording sub-system is unable to record due to resource limitations.

4 There is insufficient storage space available. (Some of the recording may be
available).

6 The recording has stopped before completion due to unknown (probably hardware)
failure.

7 The recording has been newly scheduled.

8 The recording has been deleted (for complete or in-progress recordings) or removed
from the schedule (for scheduled recordings).

9 The recording is due to start in a short time.

10 The recording has been updated. For performance reasons, OITFs SHOULD NOT
dispatch events with the state when only the duration of an in-progress recording has
changed.

• ScheduledRecording recording – The recording to which this event refers.

7.10.4.2 Methods

Recording getRecording(String id)

Description Returns the Recording object for which the value of the Recording.id property
corresponds to the given id parameter. If such a Recording does not exist, the
method returns null.

Arguments id Identifier corresponding to the “id” attribute of a Recording object.

void stop(Recording recording)

Description Stop an in-progress recording. The recording SHALL NOT be deleted.

Arguments recording The recording to be stopped.

void refresh()

Description Update the recordings property to show the current status of all recordings.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 129 (289)

Boolean update(String id, Integer startTime, Integer duration,

 Integer repeatDays)

Description Requests the scheduler to update a scheduled or ongoing recording.

For scheduled recordings the properties startTime, duration and repeatDays can
be modified.

For ongoing recordings only the duration property may be modified.

This method SHALL return true if the operation succeeded, or false if for any
reason it rescheduling is not possible (e.g. the updated recording overlaps with
another scheduled recording and there are insufficient system resources to do both.).

If the method returns false then no changes SHALL be made to the recording.

id The id of the recording to update

startTime The new start time of the recording, or undefined if the
start time is not to be updated.

duration The new duration of the recording, or undefined if the
duration is not to be updated.

Arguments

repeatDays The new set of days on which the recording is to be
repeated, or undefined if this is not to be updated.

7.10.4.3 Events
For the intrinsic event “onPVREvent”, a corresponding DOM level 2 event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onPVREvent PVREvent Bubbles: No

Cancelable: No

Context Info: state, recording

Note: the DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Remote UIs
SHOULD not rely on receiving these events during the bubbling or the capturing phase. Remote UIs that use DOM 2
event handlers SHALL call the addEventListener() method on the
application/oipfScheduledRecording object itself. The third parameter of addEventListener, i.e.
“useCapture”, will be ignored.

7.10.5 The Recording class
The Recording class represents an in-progress or completed recording being made available through the extended
PVR management functionality as defined in section 7.10.4. This class implements the ScheduledRecording
interface (see section 7.10.2) The difference between scheduled recordings, in-progress recordings and completed
recordings is primarily what properties are populated with values. In addition, for recorded and in-progress recordings the
following is true:

 The startPadding property is read only.

 For in-progress recordings, changes to the value of the endPadding property SHALL modify the actual
duration of the recording. If the value of the endPadding property is changed so that the current actual
duration of the recording exceeds the new actual duration specified by the sum of the startPadding,
duration and endPadding properties, the recording SHALL be stopped immediately. Changing the value
of this property for a completed recording SHALL have no effect.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 130 (289)

Recordings MAY be “manual” in that they simply record a channel at a certain time, for a period - analogous to a
traditional VCR - or alternatively recordings can be programme based.

If an in-progress recording is interrupted and automatically resumed, e.g. due to a temporary power failure, all sections of
the recording SHALL be represented by a single Recording object.

Values of properties in the Recording object SHALL be obtained from metadata about the recorded programme and
are typically copied from the Programme used for scheduling a recording by the record(Programme programme)
method of the application/oipfRecordingScheduler object. See section 7.10.4 for more information about the
mapping between the properties of a Programme and the BCG metadata. In the event of a conflict between the metadata
in the Programme and that in the broadcast channel, the conflict resolution is implementation dependent.

NOTE: The property “parentalRatings” formerly defined as part of this class is now redundant following the renaming of
the “parentalRating” property in the ScheduledRecording class to “parentalRatings”.

NOTE: The properties “state” and “isManual” formerly defined in this class are now defined in the ScheduledRecording
class, and since the Recording class inherits from the ScheduledRecording class they are still part of the Recording class.

7.10.5.1 Properties

readonly String id

An identifier for this recording. This value SHALL be unique to this recording and so can be used to
compare two recording objects to see if they refer to the same recording. The OITF SHALL guarantee
that recording identifiers are unique in relation to download identifiers and CODAsset identifiers.

Boolean doNotDelete

If true, then this recording should not be automatically deleted by the system.

Integer saveDays

The number of days for which an individual or manual recording SHOULD be saved. Recordings older
than this value MAY be deleted. If the value of this property is undefined, the default save duration
SHALL be used.

Integer saveEpisodes

The number of episodes of a series-link that SHOULD be saved. Older episodes MAY be deleted. This
is only valid when set on the latest scheduled recording in the series. If the value of this property is
undefined, the default value SHALL be used.

readonly Boolean blocked

Flag indicating whether the programme is blocked due to parental control settings or conditional access
restrictions.

The blocked and locked properties work together to provide a tri-state flag describing the status of a
programme. This can best be described by the following table:

Description blocked locked

No parental control applies. false false

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 131 (289)

Item is above the parental rating threshold (or manually
blocked); no PIN has been entered to view it and so the item
cannot currently be viewed.

true true

Item is above the parental rating threshold (or manually
blocked); the PIN has been entered and so the item can be
viewed.

true false

Invalid combination – OITFs SHALL NOT support this
combination

false true

readonly Integer showType

Flag indicating the type of show. This field SHALL take one of the following values:

Value Description

0 The show is live.

1 The show is a first-run show.

2 The show is a rerun.

readonly Boolean subtitles

Flag indicating whether subtitles or closed-caption information is available.

readonly StringCollection subtitleLanguages

Supported subtitle languages, indicated by their ISO 639.2 language codes as defined in [ISO 639.2].

readonly Boolean isHD

Flag indicating whether the programme has high-definition video.

readonly Integer audioType

Bitfield indicating the type of audio that is available for the programme. Since more than one type of
audio may be available for a given programme, the value of this field SHALL consist of one or more of
the following values ORed together:

Value Description

1 Mono audio

2 Stereo audio

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 132 (289)

4 Multi-channel audio

readonly Boolean isMultilingual

Flag indicating whether more than one audio language is available for this recording.

readonly StringCollection audioLanguages

Supported audio languages, indicated by their ISO 639.2 language codes as defined in [ISO 639.2].

readonly StringCollection genres

A collection of genres that describe this programme.

readonly Integer recordingStartTime

The actual start time of the recording, including any padding. This MAY not be the same as the
scheduled start time of the recorded programme (e.g. due to a recording starting late, or due to
start/end padding). For recordings that have not yet started, the value of this field SHALL be
undefined.

readonly Integer recordingDuration

The actual duration of the recording, including any padding. This MAY not be the same as the
scheduled duration of the recording (e.g. due to a recording finishing early, or due to start/end padding).
For recordings that have not yet started, the value of this field SHALL be undefined.

readonly BookmarkCollection bookmarks

A collection of the bookmarks set in a recording. If no bookmarks are set, the collection SHALL be
empty.

readonly Boolean locked

Flag indicating whether the current state of the parental control system prevents the recording from
being viewed (e.g. a correct parental control PIN has not been entered to allow the recording to be
viewed).

7.10.6 The RecordingCollection class
This section is intentionally left empty.

7.10.7 The PVREvent class
This section is intentionally left empty.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 133 (289)

7.10.8 The Bookmark class
The Bookmark class represents a bookmark or chapter mark in a recording or CoD asset. This is not a web bookmark –
instead, it is a point from which the viewer may want to resume playback of a piece of content. These MAY be set
implicitly without user intervention (e.g. at the point where a user stops watching a recording, in order to allow them to
resume from that point later) or explicitly by the user (e.g. at the start of a favourite scene).

7.10.8.1 Properties

readonly Integer time

The time at which the bookmark is set, in seconds from the start of the content item.

readonly String name

The name of the bookmark.

7.10.9 The BookmarkCollection class
A BookmarkCollection is a collection of bookmarks, ordered by time. Next to the properties and methods defined
below a BookmarkCollection object SHALL support the array notation to access the bookmarks in this collection

NOTE: In principle bookmarks MAY be stored on in the network however the protocol for communicating bookmarks
between the OITF and the network is not defined in the present document.

7.10.9.1 Properties

readonly Integer length

The number of items in the collection.

7.10.9.2 Methods

Bookmark item(Integer index)

Description The item at position index in the collection.

Arguments index The index into the collection.

Bookmark addBookmark(Integer time, String name)

Description Add a new bookmark to the collection. If the bookmark cannot be added (e.g.
because the value given for time lies outside the length of the recording), this method
SHALL return null.

Arguments time The time at which the bookmark is set, in seconds since the start of
the recording.

Arguments name The name of the bookmark.

void removeBookmark(Bookmark bookmark)

Description Remove a bookmark from the collection.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 134 (289)

Arguments bookmark The bookmark to be removed.

7.11 Remote Management APIs
This section defines interfaces to perform remote diagnostics and management of the device.

Browser based remote management SHALL be supported by OITFs that have indicated
<remote_diagnostics>true</remote_diagnostics> in their capability profile (as defined in section 9.3.12)

7.11.1 The application/oipfRemoteManagement embedded object
The application/oipfRemoteManagement embedded object has the following properties and methods.

Access to the functionality of the application/oipfRemoteManagement embedded object SHALL adhere to the
security requirements as defined in section 10.

7.11.1.1 Properties

readonly String vendorName

The value of this property SHALL be the same as the value of the LocalSystem.vendorName
property (see section 7.3.3.1)

readonly String modelName

The value of this property SHALL be the same as the value of the LocalSystem.modelName property
(see section 7.3.3.1)

readonly String softwareVersion

The value of this property SHALL be the same as the value of the LocalSystem.softwareVersion
property (see section 7.3.3.1)

readonly String hardwareVersion

The value of this property SHALL be the same as the value of the LocalSystem.hardwareVersion
property (see section 7.3.3.1)

readonly String familyName

The value of this property SHALL be the same as the value of the LocalSystem.familyName
property (see section 7.3.3.1)

7.11.1.2 Methods

String getParameter(String parameterName)

Description Returns the requested parameter.

Arguments parameterName “SAMPLE_PACKET_LOSS”: This queries the RTP packet loss since
the last call to this function, or the start of the current RTP
content item, whichever is more recent. The returned string is of
the format “<time in milliseconds since the last sample> <fraction
lost> <number of packets lost>”. These fields (i.e. <xxx>) are

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 135 (289)

defined as described in [RFC3550] section 6.4.2 and are decimal
numbers (encoded as strings). If no content item is playing an
empty string is returned.

“SAMPLE_DECODER_ERRORS”: This queries the decoder errors
since the last call to this function, or the start of the current RTP
content item, whichever is more recent. The returned string is of
the format “<time in milliseconds since the sample> <total
number of frames decoded> <total number of errors>”. These
fields are decimal numbers (encoded as strings). If no content
item is playing an empty string is returned.

“CUMULATIVE_PACKET_LOSS”: This queries the RTP packet loss
since the start of the current RTP content item. The returned
string is of the format “<time in milliseconds of this sample within
the content> <fraction lost> <number of packets lost>”. These
fields (i.e. <xxx>) are defined as described in [RFC3550] section
6.4.2 and are decimal numbers (encoded as strings). If no
content item is playing an empty string is returned.

“CUMULATIVE_DECODER_ERRORS”: This queries the decoder
errors since the start of the current RTP content item, whichever
is more recent. The returned string is of the format “<time in
milliseconds of this sample within the content> <total number of
frames decoded> <total number of errors>”. These fields are
decimal numbers (encoded as strings). If no content item is
playing an empty string is returned.

All parameter values are case-insensitive. Optionally, further
vendor specific parameters may be supported.

In the case that a parameter is requested that a device does not
support, it SHALL return an empty string.

String setParameter(String parameterName, String value)

Description Sets the requested parameter. Support for this API is optional.

parameterName The name of the parameter. Arguments

value The value of the parameter.

Integer triggerSoftwareUpdate(String token)

Description Triggers an OITF to start its software update process. The process itself and any user
involvement (e.g. to confirm agreement for a software update) is not defined. The
method is blocking. The returned integer is a result code that can take the following
values:

Result
message

Description Semantics

0 Successful The request is successful and the device
software will be updated.

1 Unknown error triggerSoftwareUpdate() failed because
an unspecified error occurred.

2 Invalid token triggerSoftwareUpdate() failed because
the token is not valid.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 136 (289)

3 No update
available

triggerSoftwareUpdate() failed, because
no update exists.

Arguments token An optional token string used to assist in the

software update process. The token may be
used to transfer credentials information to control
the software update.

7.12 Metadata APIs
This section defines the JavaScript APIs used by DAE applications for reading and searching metadata about
programmes. This API does not specify whether these query operations are carried out on the OITF or whether they
require communication with a server.

The metadata API provides DAE applications with high-level access to metadata about programmes and channels. This
document describes the mapping between this API and CoD and programme guide metadata. Mappings between this API
and other metadata sources are not specified in this document.

This section SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a “type”
attribute with value “bcg” or “dvb-si” as defined in section 9.3.7 in their capability.

Note that in order to access the metadata of programmes and channels several extensions to the Programme and
Channel classes have been defined when the OITF has indicated support for <clientMetadata>. See sections
7.16.2.3 “Metadata extensions to Programme” and 7.13.11.3 “Metadata extensions to Channel” for more information).

The functionality as described in this section is subject to the security model of section 10 (in particular section 10.1.3.6).

7.12.1 The application/oipfSearchManager embedded object
OITFs SHALL implement the “application/oipfSearchManager” embedded object. This object provides a
mechanism for applications to create and manage metadata searches.

7.12.1.1 Properties

readonly Integer guideDaysAvailable

The number of days for which guide data is available. A value of -1 means that the amount of guide
data available is unknown.

function onMetadataUpdate(Integer action, Integer info, Object object)

This function is the DOM 0 event handler for events indicating changes in metadata. This SHALL be
raised under the following circumstances:

1) When a new version of the metadata is discovered. Note that new versions of metadata can be
made available without any of the individual items of metadata changing. It is an application's
responsibility to determine what, if anything, has changed.

2) When the values of the blocked or locked properties on a content item change due to changes in
the parental control subsystem (e.g. parental control being enabled or disabled, or a content item
being unlocked with a PIN).

• The specified function is called with the arguments action, info and object. These arguments are
defined as follows: Integer action – the type of update that has taken place. This field will
take one of the following values:

Value Description

1 A new version of metadata is available (see clause 4.1.2.1.2 of
[META]) and applications SHOULD discard all references to
Programme objects immediately and re-acquire them.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 137 (289)

2 A change to the parental control flags for a content item has
occurred (e.g. the user has unlocked the parental control features
of the receiver, allowing a blocked item to be played).

3 A flag affecting the filtering criteria of a channel has changed.
Applications MAY listen for events with this action code to update
lists of favourite channels, for instance.

• Integer info – extended information about the type of update that has taken place. If the
action argument is set to the value 3, the value of this field SHALL be one or more of the
following:

Value Description

1 The list of blocked channels has changed.

2 A list of favourite channels has changed.

4 The list of hidden channels has changed.

If the action argument is set to the value 2, the value of this field SHALL be one or more of:

Value Description

1 The block status of a content item has changed.

2 The lock status of a content item has changed.

This field is treated as a bitfield, so values MAY be combined to allow multiple reasons to be
passed.

• Object object – the affected channel, programme, or CoD asset. If more than one is affected,
then this argument SHALL take the value null.

function onMetadataSearch(MetadataSearch search, Integer state)

This function is the DOM 0 event handler for events relating to metadata searches. The specified
function is called with the arguments search and status. These arguments are defined as follows:

• MetadataSearch search – the affected search

• Number status – the new status of the search

Value Description

0 Search has finished. This event SHALL be generated when a
search has completed.

1 This value is not used.

2 This value is not used.

3 The search has been aborted, either because of a call to
SearchResults.abort() or because the parameters for the
search have been modified (e.g. the query, constraints or search

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 138 (289)

target).

4 The search cannot be completed due to a lack of resources or
any other reason (e.g. insufficient memory is available to cache all
of the requested results).

For the intrinsic events “onMetadataSearch” and “onMetadataUpdate”, corresponding DOM level 2 events
SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onMetadataSearch MetadataSearch Bubbles: No

Cancelable: No

Context Info: search, status

onMetadataUpdate MetadataUpdate Bubbles: No

Cancelable: No

Context Info: action, info, object

These events are targeted at the application/oipfSearchManager object.

7.12.1.2 Methods

MetadataSearch createSearch(Integer searchTarget)

Description Create a MetadataSearch object that can be used to search the metadata.

Arguments searchTarget The metadata that should be searched.

Valid values of the searchTarget parameter are:

Value Description

1 Metadata relating to scheduled content shall be
searched.

2 Metadata relating to content on demand shall be
searched.

These values are treated as a bitfield, allowing searches to be
carried out across multiple search targets.

ChannelConfig getChannelConfig()

Description Returns the channel line-up of the tuner in the form of a ChannelConfig object as
defined in section 7.13.9. This includes the favourite lists.

The ChannelConfig object returned from this function SHALL be identical to the
ChannelConfig object returned from the getChannelConfig() method on the
video/broadcast object as defined in section 7.13.1.3.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 139 (289)

7.12.2 The MetadataSearch class
A MetadataSearch object represents a query of the metadata about available programmes. Applications can create
MetadataSearch objects using the createSearch() method on the application/oipfSearchManager
object. When metadata queries are performed on a remote server, the protocol used is defined in section 4.1.2.2 of
[META].

Each search consists of three steps:

1. Definition of the query. The application creates a MetadataSearch object, creates its associated Query
object and sets any applicable constraints and result ordering.

2. Acquisition of results. The receiver acquires some or all of the items that match the specified query and
constraints, and caches the requested subset of the results. This is typically triggered by a call to
getResults().

3. Retrieval. The application accesses the results via the SearchResults class.

The MetadataSearch and SearchResults classes work together to manage an individual search. For every search,
the MetadataSearch object and its corresponding SearchResults object SHALL be in one of three states as
described in Table 11. Figure 11 below shows the transitions between these states:

Figure 11: State machine for a metadata search (informative)

Idle

SearchResults.abort()
OR changing the query,
constraints or ordering
rules on the
MetadataSearch object
OR insufficient
resources to retrieve all
of the requested results

SearchResults.getResults()

SearchResults.getResults()

Searching

Found

SearchResults.getResults()

SearchResults.abort()
OR changing the query,
constraints or ordering rules
on the MetadataSearch object.

MetadataSearchEvent
state=0

Table 11: Metadata search states (normative)

State Description

Idle The search is idle; no results are available. This is the initial state of the search.
In this state, the application can set or modify the query, constraints or ordering
rules that are applied to the search.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 140 (289)

No search results are available in this state – any calls to
SearchResults.item() SHALL return undefined and the values of the
length and totalSize properties on the SearchResults object SHALL return
zero. Any search results that have been cached by the terminal SHALL be
discarded when the Idle state is entered.

Calling the SearchResults.getResults() method SHALL cause a state
transition to the Searching state.

Searching Results are being retrieved and are not yet available to applications.

If the terminal has not previously cached the full set of search results, the
terminal performs the search to gather the requested results.

If a new version of the metadata is detected (e.g. due to an EIT update) while
the search is in this state, results SHALL be retrieved from either the new or
original version of the metadata but SHALL NOT be retrieved from a
combination of the two versions.

Calls to SearchResults.item() SHALL return undefined.

Any modification of the search parameters (e.g. changing the query or
adding/removing constraints, or calling findProgrammesFromStream()) by the
application SHALL stop the current search and cause a transition to the Idle
state. The terminal SHALL dispatch a MetadataSearch event with status=3.

When all requested results have been found, the terminal SHALL dispatch a
MetadataSearch event with status=0 and a state transition to the Found state
SHALL occur.

If the search cannot be completed due to a lack of resources or any other
reason, the terminal SHALL dispatch a MetadataSearch event with status=4
and a state transition to the Idle state SHALL occur.

Calls to the SearchResults.getResults()method SHALL abort the retrieval
of search results and attempt to retrieve the newly-requested set of results
instead.

Found Search results are available and can be retrieved by applications. The data
exposed via the SearchResults.item() method is static and never changes
as a result of any updates to the underlying metadata database until
SearchResults.getResults() is next called.

If a new version of the metadata is detected (e.g. due to an EIT update), a
MetadataUpdate event is dispatched with action=1. Subsequent calls to
SearchResult.getResults() SHALL return results based on the updated
metadata.

Calls to SearchResults.getResults() SHALL cause a state transition to the
Searching state.

Any modification of the search parameters (e.g. changing the query or
adding/removing constraints, or calling findProgrammesFromStream()) by the
application SHALL cause the current set of results to be discarded and SHALL
cause a transition to the Idle state. The terminal SHALL dispatch a
MetadataSearch event with status=3.

Changes to the search parameters (e.g. changing the query or adding/removing constraints or modifying the search target,
or calling findProgrammesFromStream())SHALL be applied when the getResults() method on the
corresponding SearchResults object is called. Due to the nature of metadata queries, searches are asynchronous and
events are used to notify the application that results are available. MetadataSearch events SHALL be targeted at the
application/oipfSearchManager object.

The present document is intentionally silent about the implementation of the search mechanism and the algorithm for
retrieving and caching search results except where described in Table 11 above. When performing a search, the receiver
MAY gather all search results and cache them (or cache a set of pointers into the full database), or gather only the subset
of search results determined by the getResults() parameters, or take an alternative approach not described here.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 141 (289)

7.12.2.1 Properties

readonly Integer searchTarget

 The target(s) of the search. Valid values of the searchTarget parameter are:

Value Description

1 Metadata relating to scheduled content SHALL be searched.

2 Metadata relating to on-demand content SHALL be searched.

These values SHALL be treated as a bitfield, allowing searches to be carried out across multiple search
targets.

readonly SearchResults result

The subset of search results that has been requested by the application.

7.12.2.2 Methods

void setQuery(Query query)

Description Set the query terms to be used for this search, discarding any previously-set query
terms.

Arguments query The query terms to be used

void addRatingConstraint(ParentalRatingScheme scheme, Integer threshold)

Description Constrain the search to only include results whose parental rating value is below the
specified threshold.

scheme The parental rating scheme upon which the constraint SHALL be
based. If the value of this argument is null, any existing parental
rating constraints SHALL be cleared.

Arguments

threshold The threshold above which results SHALL NOT be returned. If the
value of this argument is null, any existing constraint for the
specified parental rating scheme SHALL be cleared.

void addCurrentRatingConstraint()

Description Constrain the search to only include results whose parental rating value is below the
threshold currently set by the user.

void addChannelConstraint(ChannelList channels)

Description Constrain the search to only include results from the specified channels. If a channel
constraint has already been set, subsequent calls to
addChannelConstraint()SHALL add the specified channels to the list of channels
from which results should be returned.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 142 (289)

For CoD searches, adding a channel constraint SHALL have no effect.

Arguments channels The channels from which results SHALL be returned. If the value
of this argument is null, any existing channel constraint SHALL
be removed.

void addChannelConstraint(Channel channel)

Description Constrain the search to only include results from the specified channel. If a channel
constraint has already been set, subsequent calls to addChannelConstraint()
SHALL add the specified channel to the list of channels from which results should be
returned.

For CoD searches, adding a channel constraint SHALL have no effect.

Arguments channel The channel from which results SHALL be returned. If the value of
this argument is null, any existing channel constraint SHALL be
removed.

void orderBy(String field, Boolean ascending)

Description Set the order in which results SHOULD be returned in future. Any existing search
results SHALL not be re-ordered. Subsequent calls to orderBy() will apply further
levels of ordering within the order defined by previous calls. For example:

 orderBy(“ServiceName”, true);
 orderBy(“PublishedStart”, true);

will cause results to be ordered by service name and then by start time for results
with the same channel number.

field The name of the field by which results SHOULD be sorted. A
value of null indicates that any currently-set order SHALL be
cleared and the default sort order should be used.

Arguments

ascending Flag indicating whether the results SHOULD be returned in
ascending or descending order.

Query createQuery(String field, Integer comparison, String value)

Description Create a metadata query for a specific value in a specific field within the metadata.
Simple queries MAY be combined to create more complex queries. Applications
SHALL follow the ECMAScript type conversion rules to convert non-string values into
their string representation, if necessary.

field The name of the field to compare. Fields are identified using the
format <classname>.<propertyname> where classname SHALL
be one of “Programme”, “CODAsset”, “CODService” or
“CODFolder” and <propertyname> SHALL be a valid property
name on the corresponding class.

Arguments

comparison The type of comparison. One of:

Value Description

0 True if the specified value is equal to the value of
the specified field.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 143 (289)

1 True if the specified value is not equal to the value
of the specified field.

2 True if the value of the specified field is greater
than the specified value.

3 True if the value of the specified field is greater
than or equal to the specified value.

4 True if the value of the specified field is less than
the specified value.

5 True if the value of the specified field is less than
or equal to the specified value.

6 True if the string value of the specified field
contains the specified value. This operation SHALL
be case insensitive, and SHALL match parts of a
word as well as whole words (e.g. a value of “term”
will match a field value of “Terminator”).

value The value to check. Applications SHALL follow the ECMAScript

type conversion rules to convert non-string values into their string
representation, if necessary

void findProgrammesFromStream(Channel channel, Integer startTime)

Description Set a query and constraints for retrieving metadata for programmes from a given
channel and given start time from metadata contained in the stream as defined in
section 4.1.3 of [META]. Searches made using this method will implicitly remove any
existing constraints, ordering or queries created by prior calls to methods on this
object. This method does not cause the search to be performed; applications must call
getResults() to retrieve the results.

channel The channel for which programme information should be found. Arguments

startTime The start of the time period for which results should be returned
measured in seconds since midnight (GMT) on 1/1/1970. The start time
is inclusive; any programmes starting at the start time, or which are
showing at the start time, will be included in the search results. If null,
the search will start from the current time.

7.12.3 The Query class
The Query class represents a metadata query that the user wants to carry out. This may be a simple search, or a complex
search involving Boolean logic. Queries are immutable; an operation on a query SHALL return a new Query object,
allowing applications to continue referring to the original query.

The examples below show how more complex queries can be constructed:
 Query qa = mySearch.createQuery("Title", 6, "Terminator");
 Query qb = mySearch.createQuery ("SpokenLanguage", 0, "fr-CA");
 Query qc = qb.and(qa.not());

7.12.3.1 Properties
This section is intentionally left empty.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 144 (289)

7.12.3.2 Methods

Query and(Query query)

Description Create a query based on the logical AND of the predicates represented by the current
query and the argument query.

Arguments query The second predicate for the AND operation.

Query or(Query query)

Description Create a query based on the logical OR of the predicates represented by the current
query and the argument query.

Arguments query The second predicate for the OR operation.

Query not()

Description Create a new query that is the logical negation of the current query.

7.12.4 The SearchResults class
The SearchResults class represents the results of a metadata search. Since the result set may contain a large number
of items, applications request a ‘window’ on to the result set, similar to the functionality provided by the OFFSET and
LIMIT clauses in SQL.

Applications MAY request the contents of the result in groups of an arbitrary size, based on an offset from the beginning
of the result set. The data SHALL be fetched from the appropriate source, and the application SHALL be notified when
the data is available.

The set of results SHALL only be valid if a call to getResults()has been made. If this method has not been called,
the set of results SHALL be empty (i.e. the value of the totalSize property SHALL be 0 and calls to item() SHALL
return undefined).

In addition to the properties and methods defined below a SearchResults object SHALL support the array notation to
access the results in this collection.

7.12.4.1 Properties

readonly Integer length

The number of items in the currently available results. The value of this property SHALL be zero until
getResults()has been called and a MetadataSearch event notifying the application that results are
available has been dispatched

readonly Integer offset

The current offset into the total result set.

readonly Integer totalSize

The total number of items in the result set. If results are fetched asynchronously, the value of this
property SHALL be undefined until getResults() has been called and a MetadataSearch event
notifying the application that results are available has been dispatched.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 145 (289)

7.12.4.2 Methods

Object item(Integer index)

Description Return the item at position index in the collection of currently available results, or
undefined if no item is present at that position. This function SHALL only return
objects that are instances of Programme, CODAsset, CODFolder, or CODService.

Arguments index The index into the result set.

Boolean getResults(Integer offset, Integer count)

Description Perform the search and retrieve the specified subset of the items that match the
query.

Results SHALL be returned asynchronously. A MetadataSearch event with
status=0 SHALL be dispatched when results are available.

offset The number of items at the start of the result set to be skipped before
data is retrieved.

Arguments

count The number of results to retrieve.

void abort()

Description Abort any outstanding request for results and remove any query, constraints or
ordering rules set on the MetadataSearch object that is associated with this
SearchResults object. Items currently in the collection SHALL be removed (i.e. the
value of the length property SHALL be 0 and any calls to item()SHALL return
undefined). All cached search results SHALL be discarded.

7.12.5 The MetadataSearchEvent class
This section is intentionally left empty.

7.12.6 The MetadataUpdateEvent class
This section is intentionally left empty.

7.13 Scheduled content and hybrid tuner APIs
This section SHALL apply to OITFs that have indicated support for tuner control (i.e.
<video_broadcast>true</video_broadcast> as defined in section 9.3.1) in their capability. It describes the
video/broadcast embedded object needed to support display and control by a DAE application of scheduled content
received over local tuner functionality available to an OITF, including the conveyance of the channel list to the server.
The term “tuner” is used here to identify a piece of functionality to enable switching between different types of scheduled
content services that are identified through logical channels. This includes IP broadcast channels, as well as traditional
broadcast channels received over a hybrid tuner.

7.13.1 The video/broadcast embedded object
The OITF SHALL support the video/broadcast embedded object with the following properties and methods, which
SHALL adhere to the tuner related security requirements in section 10.1.3.1. The MIME type of this object SHALL be
“video/broadcast”.

7.13.1.1 State diagram for video/broadcast objects
The state diagram below shows the states that a video/broadcast object may be in. Dashed lines indicate automatic
transitions between states. The video/broadcast object SHALL be in the unrealized state when it is instantiated.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 146 (289)

Figure 12: State diagram for embedded video/broadcast objects (informative).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 147 (289)

Transient errors are defined as ones that that the OITF will automatically recover from without intervention by an
application. Transient errors persist until either the condition which caused them is corrected or it is determined that it
cannot be connected and the error becomes permanent. Permanent errors are defined as ones that the OITF will not
automatically attempt to recover from.

Terminals SHALL perform the state changes in Table 12 under the conditions described and generate the listed event(s).
Terminals SHALL not change state in circumstances other than defined in this section.

Table 12: State transitions for the video/broadcast embedded object

Old State Trigger New State State Transition
Events

Description

All states setChannel(
channel) where
channel != null and the
channel type is supported
and the combination of
channel properties is
valid and a suitable tuner
is available

Connecting PlayStateChange The terminal attempts to connect to
the requested channel. The
currentChannel object reflects the
channel being changed to.

All states setChannel(
channel) where
channel != null but
either the channel type is
not supported or the
combination of channel
properties is invalid or a
suitable tuner is not
available

No change ChannelChangeError

 The terminal remains in the same
state.

Connecting
or
Presenting
or Stopped

nextChannel(),
prevChannel() where
the video/broadcast
object currentChannel
is in the channel list and
a suitable tuner is
available

Connecting PlayStateChange The terminal attempts to connect to
the requested channel. The
currentChannel object reflects the
channel being changed to.

Connecting nextChannel(),
prevChannel() where
the video/broadcast
object currentChannel
is not in the channel list

Unrealized ChannelChangeError

PlayStateChange

Presenting
or Stopped

nextChannel(),
prevChannel() where
the video/broadcast
object currentChannel
is not in the channel list

No change ChannelChangeError The terminal remains in the same
state.

Connecting
or
Presenting
or Stopped

nextChannel(),
prevChannel() where
the video/broadcast
object currentChannel
is in the channel list but
no suitable tuner is
available

No change ChannelChangeError The terminal remains in the same
state.

Unrealized bindToCurrentChann
el() when at least one
channel is currently being
presented by the OITF
and binding to the
necessary resources
does not fail

Presenting PlayStateChange The terminal binds the
video/broadcast object to the current
channel being natively presented.
The currentChannel object reflects
the channel being presented.

Unrealized bindToCurrentChann
el() when there is no
channel currently being
presented or binding to

Unrealized PlayStateChange The terminal continues to present the
current channel, if any.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 148 (289)

Old State Trigger New State State Transition
Events

Description

the necessary resources
to play the channel
through the
video/broadcast object
fails

Connecting The terminal successfully
connected to the
broadcast or IP multicast
stream and presented its
contents.

Presenting ChannelChangeSucc
eeded

PlayStateChange

This transition occurs automatically
when media presentation starts.

Connecting The terminal successfully
connected to the
broadcast or IP multicast
stream but presentation
of content is blocked, e.g.
by a parental rating
mechanism or content
protection mechanism

Connecting ChannelChangeSucc
eeded

PlayStateChange

This is conceptually equivalent to a
successful channel change where a
transient error immediately pre-empts
media presentation without the
video/broadcast object entering the
presenting state.

Connecting Recovery from a
transient error, including

- presentation of content
no longer being blocked
by a content protection
mechanism (e.g. the start
of a free preview period
or a channel that
changes from being
encrypted to being in the
clear during the day)
- the end-user entering a
PIN code or other
equivalent authorization
to enable access to
content protected by
parental access control
- resumption of delivery
of media data

Presenting PlayStateChange If a video/broadcast object was
forced from the presenting state to
the connecting state due to a
transient error and that error
condition clears while the
video/broadcast object remains in the
connecting state then the
video/broadcast object SHALL
automatically transition back to the
presenting state.

Connecting
or
Presenting
or Stopped

release() or
setChannel(null)

Unrealized PlayStateChange The control is returned to the
terminal. The currentChannel
object is set to null.

If an application has modified the set
of components being presented (e.g.
changing the audio or subtitle stream
being presented) then the same set
of components will continue to be
presented.

Connecting Permanent error
including
- failure to change to a
new channel (e.g. the
channel cannot be found
or none of the media
components can be
decoded or insufficient
resources are available
to present the channel)
- exhaustion of all
possibilities for an end-
user to authorize access
to content protected by a
parental access control
mechanism (e.g. timeout
on a PIN entry dialogue)
- delivery of media data
was interrupted and has
not resumed after an

Unrealized ChannelChangeError

PlayStateChange

The terminal encountered a
permanent error

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 149 (289)

Old State Trigger New State State Transition
Events

Description

implementation-
dependent timeout

Connecting
or
Presenting

stop() Stopped PlayStateChange

Presenting Transient error including

- presentation of content
being blocked by a
content protection
mechanism,
- presentation of content
being blocked by a
parental rating
mechanism,
- interruption of delivery
of media data (either via
IP or hybrid) if either;
a) the media data is
delivered over a
connection and the
connection remains intact
or
b) the media data is
delivered via a
connectionless
mechanism

Connecting PlayStateChange The terminal encountered a transient
error.

During media presentation, transient
errors (e.g. transient errors in the
bitstream, temporary loss of signal or
temporary halting of media decoding
due to parental control issues) MAY
cause the object to transition from the
presenting state to the
connecting state. Temporary loss
of resources due to presentation
being interrupted by playback of
audio from memory MAY cause the
object to transition from the
presenting state to the
connecting state.

Presenting
or Stopped

Permanent error
including;
- interruption of delivery
of media data where the
media data is delivered
over a connection and
the connection
terminates

Unrealized PlayStateChange The terminal encountered a
permanent error.

Stopped bindToCurrentChannel() Connecting PlayStateChange Video and audio presentation is
enabled.

All states Destroy video/broadcast N/A When a video/broadcast object is
destroyed (e.g. by the
video/broadcast object being garbage
collected) control of broadcast video
SHALL be returned to the terminal. If
an application has modified the set of
components being presented (e.g.
changing the audio or subtitle stream
being presented) then the same set
of components will continue to be
presented.

When a video/broadcast object is
destroyed due to a page transition
within an application, terminals MAY
delay this operation until the new
page is fully loaded in order to avoid
display glitches if a video/broadcast
object is also present in the new
page. Presentation of broadcast
video or audio SHALL not be
interrupted in either case.

If the channel currently being presented is requested to be changed due to an action outside the application (for example,
the user pressing the CH+ key on the remote) then any video/broadcast object presenting that channel (e.g. as the result
of a call to bindToCurrentChannel()) SHALL perform the same state transitions and dispatch the same events as if
the channel change operation was initiated by the application using the setChannel() method.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 150 (289)

Scarce resources such as media decoders SHALL be claimed while in the connecting state. Resources SHALL be
released when the video/broadcast object transitions to the unrealized state. Video and audio decoding resources
SHALL be released when the video/broadcast object transitions to the stopped state. Transitioning from the
presenting to the connecting state SHOULD not cause scarce resources to be released.

Applications can use the playState property of the video/broadcast object to read its current state.

The visibility of a video/broadcast object SHALL NOT affect its state or its use of scarce resources. A
video/broadcast object which is hidden using one of the following techniques:

• the CSS visibility or opacity properties
• using the CSS display:none rule
• removed from the document’s DOM
• obscured by other elements
• positioned off the visible area of the screen

SHALL still be decoding video if it is in the presenting state and any audio associated with the currently presented
channel will still be audible. State transitions caused by calls to methods on the video/broadcast object, or due to
permanent or transient errors, will occur as shown above regardless of the visibility of the object.

7.13.1.2 Properties

Integer width

The width of the area used for rendering the video object. This property is only writable if property
fullScreen has value false. Changing the width property corresponds to changing the width property
through the HTMLObjectElement interface, and must have the same effect as changing the width through
the DOM Level 2 Style interfaces (i.e. CSS2Properties interface style.width), at least for values
specified in pixels.

Integer height

The height of the area used for rendering the video object. This property is only writable if property
fullScreen has value false. Changing the height property corresponds to changing the height
property through the HTMLObjectElement interface, and must have the same effect as changing the
height through the DOM Level 2 Style interfaces (i.e. CSS2Properties interface style.height), at least
for values specified in pixels

readonly Boolean fullScreen

Returns true if this video object is in full-screen mode, false otherwise. The default value is false.

function onChannelChangeError(Channel channel, Number errorState)

The function that is called when a request to switch a tuner to another channel resulted in an error
preventing the broadcasted content from being rendered. The specified function is called with the
arguments channel and errorState. This function may be called either in response to a channel change
initiated by the application, or a channel change initiated by the OITF (see section 7.13.1.1). These
arguments are defined as follows:

• Channel channel – the Channel object to which a channel switch was requested, but for which
the error occurred. This object SHALL have the same properties as the channel that was requested,
except that for channels of type ID_DVB_* the values for the onid and tsid properties SHALL be
extracted from the transport stream when one was found (e.g. when errorState is 12).

• Number errorState – error code detailing the type of error:

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 151 (289)

Value Description

0 channel not supported by tuner.

1 cannot tune to given transport stream (e.g. no signal)

2 tuner locked by other object.

3 parental lock on channel.

4 encrypted channel, key/module missing.

5 unknown channel (e.g. can’t resolve DVB or ISDB triplet).

6 channel switch interrupted (e.g. because another channel switch was activated before
the previous one completed).

7 channel cannot be changed, because it is currently being recorded.

8 cannot resolve URI of referenced IP channel.

9 insufficient bandwidth.

10 channel cannot be changed by nextChannel()/prevChannel() methods either
because the OITF does not maintain a favourites or channel list or because the
video/broadcast object is in the Unrealized state.

11 insufficient resources are available to present the given channel (e.g. a lack of
available codec resources).

12 specified channel not found in transport stream.

100 unidentified error.

Integer playState

The current play state of the video/broadcast object. Valid values are:

Value Description

0 unrealized; the application has not made a request to start presenting a channel or
has stopped presenting a channel and released any resources. The content of the
video/broadcast object should be transparent but if not shall be an opaque black
rectangle. Control of media presentation is under the control of the OITF, as
defined in annex H.2.

1 connecting; the terminal is connecting to the media source in order to begin
playback. Objects in this state may be buffering data in order to start playback.
Control of media presentation is under the control of the application, as defined in
annex H.2. The content of the video/broadcast object is implementation dependent.

2 presenting; the media is currently being presented to the user. The object is in this
state regardless of whether the media is playing at normal speed, paused, or
playing in a trick mode (e.g. at a speed other than normal speed). Control of media
presentation is under the control of the application, as defined in annex H.2. The
video/broadcast object contains the video being presented.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 152 (289)

3 stopped; the terminal is not presenting media, either inside the video/broadcast
object or in the logical video plane. The logical video plane is disabled. The content
of the video/broadcast object SHALL be an opaque black rectangle. Control of
media presentation is under the control of the application, as defined in annex H.2

See section 7.13.1.1 for a description of the state model for a video/broadcast object.

NOTE: Implementations where the content of the video/broadcast object is transparent in the
unrealized state will give a better user experience than ones where it is black. This happens for an
application with video in the background between when it includes a video/broadcast object in the page
and when a call to bindToCurrentChannel() completes. Applications which do not need to call
bindToCurrentChannel() should not do so. The current channel can be obtained from the
currentChannel property on the Application object which is the same as that on the
video/broadcast object under most normal conditions.

function onPlayStateChange(Number state, Number error)

The function that is called when the play state of the video/broadcast object changes. The specified
function is called with the arguments state and error. This function may be called either in response to
an initiated by the application, an action initiated by the OITF or an error (see section 7.13.1.1). These
arguments are defined as follows:

Number state – the new state of the video/broadcast object

Value Description

0 unrealized; the user (or application) has not made a request to start presenting a
channel or has stopped presenting a channel and released any resources.

1 connecting; the receiver is connecting to the media source in order to begin presenting.
Objects in this state may be buffering data in order to start playback.

2 presenting; the media is currently being presented to the user. The object is in this state
regardless of whether the media is playing at normal speed, paused, or playing in a trick
mode (e.g. at a speed other than normal speed).

Number error – if the state has changed due to an error, this field contains an error code detailing the
type of error. See the definition of onChannelChangeError above for valid values. If no error has
occurred, this argument SHALL take the value undefined.

function onChannelChangeSucceeded(Channel channel)

The function that is called when a request to switch a tuner to another channel has successfully
completed. This function may be called either in response to a channel change initiated by the application,
or a channel change initiated by the OITF (see section 7.13.1.1). The specified function is called with
argument channel, which is defined as follows:

• Channel channel – the channel to which the tuner switched. This object SHALL have the same
properties with the same values as the currentChannel object (see 7.13.7.1).

function onFullScreenChange

The function that is called when the value of fullScreen changes. The default value is null.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 153 (289)

function onfocus

The function that is called when the video object gains focus.

function onblur

The function that is called when the video object loses focus.

String data

Setting the value of the data property SHALL have no effect on the video/broadcast object. If this property
is read, the value returned SHALL always be the empty string.

7.13.1.3 Methods

ChannelConfig getChannelConfig()

Description Returns the channel line-up of the tuner in the form of a ChannelConfig object as defined
in section 7.13.9. The method SHALL return the value null if the channel list is not
(partially) managed by the OITF (i.e., if the channel list information is managed entirely in
the network).

void bindToCurrentChannel()

Description If the video/broadcast object is in the unrealized state and video from exactly one
channel is currently being presented by the OITF then this binds the video/broadcast
object to that video.

If the video/broadcast object is in the stopped state then this restarts presentation of
video and audio from the current channel under the control of the video/broadcast
object. If video from more than one channel is currently being presented by the OITF then
this binds the video/broadcast object to the channel whose audio is being presented.

If there is no channel currently being presented, or binding to the necessary resources to
play the channel through the video/broadcast object fails for whichever reason, the
OITF SHALL dispatch an event to the onPlayStateChange listener(s) whereby the
“state” parameter is given value 0 (“unrealized”) and the “error” parameter is given
the appropriate error code.

Calling this method from any other states than the unrealized or stopped states SHALL
have no effect.

See section 7.13.1.1 for more information of its usage.

Channel createChannelObject(Integer idType, String dsd, Integer sid)

Description Creates a Channel object of the specified idType. This method is typically used to create
a Channel object of type ID_DVB_SI_DIRECT. The Channel object can subsequently be
used by the setChannel() method to switch a tuner to this channel, which may or may
not be part of the channel list in the OITF. The resulting Channel object represents a
locally defined channel which, if not already present there, does not get added to the
channel list accessed through the ChannelConfig class (see 7.13.9).

Valid value for idType include: ID_DVB_SI_DIRECT. For other values this behaviour is

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 154 (289)

not specified.

If the channel of the given type cannot be created or the delivery system descriptor is not
valid, the method SHALL return null.

If the channel of the given type can be created and the delivery system descriptor is valid,
the method SHALL return a Channel object whereby at a minimum the properties with the
same names (i.e. idType, dsd and sid) are given the same value as argument idType,
dsd and sid of the createChannelObject method.

idType The type of channel, as indicated by one of the ID_* constants defined in
section 7.13.11.1. Valid value for idType include: ID_DVB_SI_DIRECT. For
other values this behaviour is not specified.

dsd The delivery system descriptor (tuning parameters) represented as a string
whose characters shall be restricted to the ISO Latin-1 character set. Each
character in the dsd represents a byte of a delivery system descriptor as
defined by DVB-SI [EN300468] section 6.2.13, such that a byte at position "i" in
the delivery system descriptor is equal the Latin-1 character code of the
character at position "i" in the dsd.

Arguments

sid The service ID, which must be within the range of 1 to 65535.

Channel createChannelObject(Integer idType, Integer onid, Integer tsid,

 Integer sid, Integer sourceID, String ipBroadcastID)

Description Creates a Channel object of the specified idType. The Channel object can subsequently
be used by the setChannel() method to switch a tuner to this channel, which may or
may not be part of the channel list in the OITF. The resulting Channel object represents a
locally defined channel which, if not already present there, does not get added to the
channel list accessed through the ChannelConfig class (see 7.13.9).

If the channel of the given idType cannot be created or the given (combination of)
arguments are not considered valid or complete, the method SHALL return null.

If the channel of the given type can be created and arguments are considered valid and
complete, then either:

1) if the channel is in the channel list then a new object of the same type and with
properties with the same values SHALL be returned as would be returned by calling
getChannelWithTriplet() with the same parameters as this method.

2) Otherwise, the method SHALL return a Channel object whereby at a minimum the
properties with the same names are given the same value as the given arguments of
the createChannelObject() method. The values specified for the remaining
properties of the Channel object are set to undefined.

idType The type of channel, as indicated by one of the ID_* constants defined
in section 7.13.11.1.

onid The original network ID. Optional argument that SHALL be specified
when the idType specifies a channel of type ID_DVB_*, ID_IPTV_URI,
or ID_ISDB_* and SHALL otherwise be ignored by the OITF.

tsid The transport stream ID. Optional argument that MAY be specified
when the idType specifies a channel of type ID_DVB_*, ID_IPTV_URI,
or ID_ISDB_* and SHALL otherwise be ignored by the OITF.

Arguments

sid The service ID. Optional argument that SHALL be specified when the
idType specifies a channel of type ID_DVB_*, ID_IPTV_URI, or
ID_ISDB_* and SHALL otherwise be ignored by the OITF.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 155 (289)

sourceID The source_ID. Optional argument that SHALL be specified when the
idType specifies a channel of type ID_ATSC_T and SHALL otherwise
be ignored by the OITF.

ipBroadcastID The DVB textual service identifier of the IP broadcast service, specified
in the format “ServiceName.DomainName” when idType specifies a
channel of type ID_IPTV_SDS, or the URI of the IP broadcast service
when idType specifies a channel of type ID_IPTV_URI. Optional
argument that SHALL be specified when the idType specifies a
channel of type ID_IPTV_SDS or ID_IPTV_URI and SHALL otherwise
be ignored by the OITF.

void setChannel(Channel channel, Boolean trickplay,

 String contentAccessDescriptorURL)

Description Requests the OITF to switch a (logical or physical) tuner to the channel specified by
channel and render the received broadcast content in the area of the browser allocated for
the video/broadcast object.

If the channel specifies an idType attribute value which is not supported by the OITF or a
combination of properties that does not identify a valid channel, the request to switch
channel SHALL fail and the OITF SHALL trigger the function specified by the
onChannelChangeError property, specifying the value 0 (“Channel not supported by
tuner”) for the errorState, and dispatch the corresponding DOM 2 event (see below).

If the channel specifies an idType attribute value supported by the OITF, and the
combination of properties defines a valid channel, the OITF SHALL relay the channel
switch request to a local physical tuner that is currently not in use by another
video/broadcast object and that can tune to the specified channel. If no tuner satisfying
these requirements is available (i.e. all physical tuners that could receive the specified
channel are in use), the request SHALL fail and OITF SHALL trigger the function specified
by the onChannelChangeError property, specifying the value ‘2’ (“tuner locked by other
object”) for the errorState and dispatch the corresponding DOM 2 event (see below). If
multiple tuners satisfying these requirements are available, the OITF selects one.

If the channel specifies an IP broadcast channel, and the OITF supports idType
ID_IPTV_SDS or ID_IPTV_URI, the OITF SHALL relay the channel switch request to a
logical ‘tuner’ that can resolve the URI of the referenced IP broadcast channel. If no logical
tuner can resolve the URI of the referenced IP broadcast channel, the request SHALL fail
and the OITF SHOULD trigger the function specified by the onChannelChangeError
property, specifying the value 8 (“cannot resolve URI of referenced IP channel”) for the
errorState, and dispatch the corresponding DOM 2 event.

The optional attribute contentAccessDescriptorURL allows for the inclusion of a
Content Access Streaming Descriptor (the format of which is defined in Annex E.2) to
provide additional information for dealing with IPTV broadcasts that are (partially) DRM-
protected. The descriptor may for example include Marlin action tokens or a
previewLicense. The attribute SHALL be undefined or null if it is not applicable.

If the Transport Stream cannot be found, either via the DSD or the (ONID,TSID) pair, then
a call to onChannelChangeError with errorstate=5 (“unknown channel”) SHALL be
triggered, and the corresponding DOM 2 event dispatched.

If the OITF succeeds in tuning to a valid transport stream but this transport stream does not
contain the requested service in the PAT, the OITF SHALL remain tuned to that location
and SHALL trigger a call to onChannelChangeError with errorstate=12 (“specified
channel not found in transport stream”), and dispatch the corresponding DOM 2 event.

If, following this procedure, the OITF selects a tuner that was not already being used to
display video inside the video/broadcast object, the OITF SHALL claim the selected
tuner and the associated resources (e.g., decoding and rendering resources) on behalf of
the video/broadcast object.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 156 (289)

If all of the following are true:

• the video/broadcast object is successfully switched to the new channel
• the channel is a locally defined channel (created using the createChannelObject

method)
• the new channel has the same tuning parameters as a channel already in the

channel list in the OITF
• the idType is a value other than ID_IPTV_URI

then the result of this operation SHALL be the same as calling setChannel with the
channel argument being the corresponding channel object in the channel list, such that:

• the values of the properties of the video/broadcast object currentChannel
SHALL be the same as those of the channel in the channel list

• any subsequent call to nextChannel or prevChannel SHALL switch the tuner to
the next or previous channel in the favourite list or channel list as appropriate, as
described in the definitions of these methods

Otherwise, if any of the above conditions is not true, then:

• the values of the properties of the video/broadcast object currentChannel
SHALL be the same as those provided in the channel argument to this method,
updated as defined in section 8.4.2

• the channel is not considered to be part of the channel list

the resulting current channel after any subsequent call to nextChannel() or
prevChannel() is implementation dependent, however all appropriate functions SHALL
be called and DOM 2 events dispatched. The OITF SHALL visualize the video content
received over the tuner in the area of the browser allocated for the video/broadcast
object. If the OITF cannot visualize the video content following a successful tuner switch
(e.g., because the channel is under parental lock), the OITF SHALL trigger the function
specified by the onChannelChangeError property with the appropriate channel and
errorState value, and dispatch a corresponding DOM 2 event (see below). If successful,
the OITF SHALL trigger the function specified by the onChannelChangeSucceeded
property with the given channel value, and also dispatch a corresponding DOM 2 event.

channel The channel to which a switched is requested.

If the channel object specifies a ccid, the ccid identifies
the channel to be set. If the channel does not specify a
ccid, the idType determines which properties of the
channel are used to define the channel to be set, for
example, if the channel is of type ID_IPTV_SDS or
ID_IPTV_URI, the ipBroadcastID identifies the
channel to be set.

If null, the video/broadcast object SHALL transition to
the unrealized state and release any resources used for
decoding video and/or audio. A
ChannelChangeSucceeded event SHALL be generated
when the operation has completed.

trickplay Optional flag indicating whether resources SHOULD be
allocated to support trick play. This argument provides a
hint to the receiver in order that it may allocate
appropriate resources. Failure to allocate appropriate
resources, due to a resource conflict, a lack of trickplay
support, or due to the OITF ignoring this hint, SHALL
have no effect on the success or failure of this method.
If trickplay is not supported, this SHALL be indicated
through the failure of later calls to methods invoking
trickplay functionality.

Arguments

contentAccessDescriptorURL Optional argument containing a Content Access
Streaming descriptor (the format of which is defined in
Annex E.2) that can be included to provide additional

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 157 (289)

information for dealing with IPTV broadcasts that are
(partially) DRM-protected. The argument SHALL be
undefined or null if it is not applicable.

void prevChannel()

Description Requests the OITF to switch the tuner that is currently in use by the video/broadcast
object to the channel that precedes the current channel in the active favourite list, or, if no
favourite list is currently selected, to the previous channel in the channel list. If it has
reached the start of the favourite/channel list, it SHALL cycle to the last channel in the list.

If the current channel is not part of the channel list, it is implementation dependent whether
the method call succeeds or fails and, if it succeeds, which channel is selected. In both
cases, all appropriate functions SHALL be called and DOM 2 events dispatched.

If the previous channel is a channel that cannot be received over the tuner currently used
by the video/broadcast object, the OITF SHALL relay the channel switch request to a
local physical or logical tuner that is not in use and that can tune to the specified channel.
The behaviour is defined in more detail in the description of the setChannel method.

If an error occurs during switching to the previous channel, the OITF SHALL trigger the
function specified by the onChannelChangeError property with the appropriate channel
and errorState value, and dispatch the corresponding DOM 2 Event (see below).

If the OITF does not maintain the channel list and favourite list by itself, the request SHALL
fail and the OITF SHALL trigger the onChannelChangeError function with the channel
property having the value null, and errorState=10 (“channel cannot be changed by
nextChannel()/prevChannel() methods”).

If successful, the OITF SHALL trigger the function specified by the
onChannelChangeSucceeded property with the appropriate channel value, and also
dispatch the corresponding DOM 2 event.

Calls to this method are valid in the Connecting, Presenting and Stopped states. They are
not valid in the Unrealized state and SHALL fail.

void nextChannel()

Description Requests the OITF to switch the tuner that is currently in use by the video/broadcast
object to the channel that succeeds the current channel in the active favourites list, or, if no
favourite list is currently selected, to the next channel in the channel list. If it has reached
the end of the favourite/channel list, it SHALL cycle to the first channel in the list.

If the current channel is not part of the channel list, it is implementation dependent whether
the method call succeeds or fails and, if it succeeds, which channel is selected. In both
cases, all appropriate functions SHALL be called and DOM 2 events dispatched. If the next
channel is channel that cannot be received over the tuner currently used by the
video/broadcast object, the OITF SHALL relay the channel switch request to a local
physical or logical tuner that is not in use and that can tune to the specified channel. The
behaviour is defined in more detail in the description of the setChannel method.

If an error occurs during switching to the next channel, the OITF SHALL trigger the function
specified by the onChannelChangeError property with the appropriate channel and
errorState value, and dispatch the corresponding DOM 2 event (see below).

If the OITF does not maintain the channel list and favourite list by itself, the request SHALL
fail and the OITF SHALL trigger the onChannelChangeError function with the channel
property having the value null, and errorState=10 (“channel cannot be changed by
nextChannel()/prevChannel() methods”).

If successful, the OITF SHALL trigger the function specified by the
onChannelChangeSucceeded property with the appropriate channel value, and also
dispatch the corresponding DOM 2 event.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 158 (289)

Calls to this method are valid in the Connecting, Presenting and Stopped states. They are
not valid in the Unrealized state and SHALL fail.

void setFullScreen(Boolean fullscreen)

Description Sets the rendering of the video content to full-screen (fullscreen = true) or windowed
(fullscreen = false) mode (as per [Req. 5.7.1.c] of [CEA2014A]). If this indicates a
change in mode, this SHALL result in a change of the value of property fullScreen.
Changing the mode SHALL NOT affect the z-index of the video object.

Arguments fullScreen Boolean to indicate whether video content SHOULD be rendered
full-screen or not.

Boolean setVolume(Integer volume)

Description Adjusts the volume of the currently playing media to the volume as indicated by volume.
Allowed values for the volume argument are all the integer values starting with 0 up to and
including 100. A value of 0 means the sound will be muted. A value of 100 means that the
volume will become equal to current “master” volume of the device, whereby the “master”
volume of the device is the volume currently set for the main audio output mixer of the
device. All values between 0 and 100 define a linear increase of the volume as a
percentage of the current master volume, whereby the OITF SHALL map it to the closest
volume level supported by the platform.

The method returns true if the volume has changed. Returns false if the volume has not
changed. Applications MAY use the getVolume() method to retrieve the actual volume
set.

Arguments volume Integer value between 0 up to and including 100 to
indicate volume level.

Integer getVolume()

Description Returns the actual volume level set; for systems that do not support individual volume
control of players, this method will have no effect and will always return 100.

void release()

Description Releases the decoder/tuner used for displaying the video broadcast inside the
video/broadcast object, stopping any form of visualization of the video inside the
video/broadcast object and releasing any other associated resources.

void stop()

Description Stop presenting broadcast video. If the video/broadcast object is in any state other than the
unrealized state, it SHALL transition to the stopped state and stop video and audio
presentation. This SHALL have no effect on access to non-media broadcast resources
such as EIT information.

Calling this method from the unrealized state SHALL have no effect.

See section 7.13.1.1 for more information of its usage.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 159 (289)

7.13.1.4 Events
For the intrinsic events “onfocus”, “onblur”, “onChannelChangeError”, “onChannelChangeSucceeded”,
and “onFullScreenChange”, corresponding DOM level 2 events SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event
properties

onfocus focus (as specified in section 1.6.5 of
[DOM 2 Events])

Bubbles: No

Cancelable: No

Context Info: None

onblur blur (as specified in section 1.6.5 of
[DOM 2 Events])

Bubbles: No

Cancelable: No

Context Info: None

onFullScreenChange FullScreenChange Bubbles: No

Cancelable: No

Context Info: None

onChannelChangeError ChannelChangeError Bubbles: No

Cancelable: No

Context Info: channel,
errorState

onChannelChangeSucceeded ChannelChangeSucceeded Bubbles: No

Cancelable: No

Context Info: channel

onPlayStateChange PlayStateChange Bubbles: No

Cancelable: No

Context Info: state,
error

Note: these DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the video/broadcast object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.1.5 Styling
The OITF SHALL support the CSS properties (which MAY be changed using the DOM Level 2 Style module) for
embedded video/broadcast objects: width, height, position, float, top, left, right, bottom, vertical-align, padding
and padding-* properties, margin and margin-* properties, border and border-* properties, visibility, and display.

If the value of the <overlaylocaltuner> element in the capability description of the OITF is not set to “none”, then the
OITF SHALL support overlays as defined by bullet p) of [Req. 5.2.1.a] of CEA-2014-A for broadcasts coming from the
local tuner that are displayed using the video/broadcast embedded object. In this case, broadcast video objects SHALL
support CSS-property z-index, in both full-screen and windowed mode. Moreover, the OITF SHALL support the CSS
opacity property and CSS3 RGBA color values, for any non-video XHTML element on top of a video object. If the value
of the <overlaylocaltuner> element in the capability description of the OITF is set to “none”, no objects SHALL overlay
the video, i.e. the value of z-index for video is ignored.

If the value of the <overlayIPbroadcast> element in the capability description of the OITF is not set to “none”, then the
OITF SHALL support overlays as defined by bullet p) of [Req. 5.2.1.a] of CEA-2014-A for IP broadcasts that are

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 160 (289)

displayed using the video/broadcast embedded object. In this case, broadcast video objects SHALL support CSS-property
z-index, in both full-screen and windowed mode. Moreover, the OITF SHALL support the CSS opacity property and
CSS3 RGBA color values, for any non-video XHTML element on top of a video object. If the value of the
<overlayIPbroadcast> element in the capability description of the OITF is set to “none”, no objects SHALL overlay the
video, i.e. the value of z-index for video is ignored.

7.13.2 Extensions to video/broadcast for recording and time-shift
If an OITF has indicated support for recording functionality (i.e. by giving value true to element <recording> as
specified in section 9.3.3 in its capability description), the OITF SHALL support the following additional constants,
properties and methods on the video/broadcast object, in order to start a recording and/or time-shift of a current
broadcast.

Note that this functionality is subject to the security model as specified in section 10.1.

This functionality is subject to the state transitions represented in the following state diagram:

Figure 13: PVR States for recordNow and timeshifting using video/broadcast (normative)

Note that when the user switches to another channel whilst the current channel is being recorded using recordNow or
the video/broadcast object gets destroyed, the conflict resolution and the release of resources is implementation
dependent. The OITF MAY report a recording error using a RecordingEvent with value 0 (“Unrealized”) for
argument state and with value 2 (“Tuner conflict”) for argument error in that case.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 161 (289)

7.13.2.1 Additional constants for video/broadcast object

Name Value Use

POSITION_START 0 Indicates a playback position relative to the start of the buffered content.

POSITION_CURRENT 1 Indicates a playback position relative to the current playback position.

POSITION_END 2 Indicates a playback position relative to the end of the buffered content.

7.13.2.2 Additional properties for video/broadcast object

function onPlaySpeedChanged(Number speed)

The function that is called when the playback speed of a channel changes.

The specified function is called with one argument, speed, which is defined as follows:

• Number speed – the playback speed of the media at the time the event was dispatched.

If the playback reaches the beginning of the time-shift buffer at rewind playback speed, then the play
state is changed to 2 (‘paused’) and a PlaySpeedChanged event with a speed of 0 is generated. If the
playback reaches the end of the time-shift buffer at fast-forward playback speed, then the play speed is
set to 1.0 and a PlaySpeedChanged event is generated.

function onPlayPositionChanged(Integer position)

The function that is called when change occurs in the play position of a channel due to the use of trick
play functions.

The specified function is called with one argument, position, which is defined as follows:

• Integer position – the playback position of the media at the time the event was dispatched,
measured from the start of the timeshift buffer. If the play position cannot be determined, this
argument takes the value undefined.

readonly Integer playbackOffset

Returns the playback position, specified as the positive offset of the live broadcast in seconds, in the
currently rendered (timeshifted) broadcast.

readonly Integer maxOffset

Returns the maximum playback offset, in seconds of the live broadcast, which is supported for the
currently rendered (timeshifted) broadcast. If the maximum offset is unknown, the value of this property
SHALL be undefined.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 162 (289)

readonly Integer recordingState

Returns the state of the OITF’s timeshift and recordNow functionality for the channel shown in the
video/broadcast object. One of:

Value Description

0 Unrealized: user/application has not requested timeshift or recordNow
functionality for the channel shown. No timeshift or recording resources
are claimed in this state.

1 Recording has been newly scheduled.

2 Recording is about to start. The receiver may be monitoring EPG data in
order to ensure that the programme scheduled to be recorded has not
been moved, or to support "accurate recording" functionality as defined
in section 11 of TS 102 323 [TS 102 323], where slight changes in the
start time of the recording do not result in the start of the recording being
missed. No recording resources have yet been acquired, although the
OITF may have tuned to the channel which is to be recorded.

3 Acquiring recording resources (incl. media connection).

4 Recording has started.

5 Recording has been updated.

6 Recording has successfully completed.

10 Acquiring timeshift resources (incl. media connection).

11 Timeshift mode has started.

function onRecordingEvent(Integer state, Integer error, String recordingId)

This function is the DOM 0 event handler for notification of state changes of the recording functionality.
The specified function is called with the following arguments:

• Integer state - The current state of the recording. One of:

Value Description

0 Unrealized: user/application has not requested timeshift or
recordNow functionality for the channel shown. No timeshift or
recording resources are claimed in this state.

1 Recording has been newly scheduled.

2 Recording is about to start . The receiver may be monitoring
EPG data in order to ensure that the programme scheduled to
be recorded has not been moved, or to support "accurate
recording" functionality as defined in section 11 of TS 102 323
[TS 102 323], where slight changes in the start time of the
recording do not result in the start of the recording being
missed. No recording resources have yet been acquired,
although the OITF may have tuned to the channel which is to be
recorded.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 163 (289)

3 Acquiring recording resources (incl. media connection).

4 Recording has started.

5 Recording has been updated.

6 Recording has successfully completed.

10 Acquiring timeshift resources (incl. media connection).

11 Timeshift mode has started.

• Integer error - If the state of the recording has changed due to an error, this field contains
an error code detailing the type of error. One of:

Value Description

0 The recording sub-system is unable to record due to resource
limitations.

1 There is insufficient storage space available. (Some of the
recording may be available).

2 Tuner conflict (e.g. due to conflicting scheduled recording).

3 Recording not allowed due to DRM restrictions.

4 Recording has stopped before completion due to unknown
(probably hardware) failure.

10 Timeshift not possible due to resource limitations.

11 Timeshift not allowed due to DRM restrictions.

12 Timeshift ended due to unknown failure.

If no error has occurred, this argument SHALL take the value undefined.

• String recordingId - The identifier of the recording to which this event refers, This SHALL
be equal to the value of the id property for the affected recording, if the event is associated with
a specific recording.

readonly Integer playPosition

The current playback position of the media, measured in milliseconds from the start of the timeshift
buffer.

readonly Number playSpeed

The current play speed of the media.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 164 (289)

readonly Number playSpeeds[]

Returns the ordered list of playback speeds, expressed as values relative to the normal playback
speed (1.0), at which the currently specified A/V content can be played (as a time-shifted broadcast in
the video/broadcast object), or undefined if the supported playback speeds are not known or the
video/broadcast object is not in timeshift mode.

If the video/broadcast object is in timeshift mode, the playSpeeds array SHALL always include at least
values 1.0 and 0.0.

7.13.2.3 Additional methods for video/broadcast object

String recordNow(Integer duration)

Description Starts recording the broadcast currently rendered in the video/broadcast object. If
the OITF has buffered the broadcasted content, the recording starts from the current
playback position in the buffer, otherwise start recording the broadcast stream as soon
as possible after the recording resources have been acquired. The specified duration
is used by the OITF to determine the minimum duration of the recording in seconds
from the current starting point.

Calling recordNow() while the broadcast that is currently rendered in the
video/broadcast object is already being recorded, SHALL have no effect on the
recording and SHALL return the value null.

In other cases, this method returns a String value representing a unique identifier to
identify the recording. If the OITF provides recording management functionality
through the APIs defined in section 7.10.4, this SHALL be the value of the “id”
attribute of the associated Recording object defined in section 7.10.5.1.

The OITF SHALL guarantee that recording identifiers are unique in relation to
download identifiers and CODAsset identifiers.

The method returns undefined if the given argument is not accepted to trigger a
recording.

If the OITF supports metadata processing in the terminal, the fields of the resulting
Recording object MAY be populated using metadata retrieved by the terminal.
Otherwise, the values of these fields SHALL be implementation-dependent

Arguments duration The minimum duration of the recording in seconds. A value of -1
indicates that the recording SHOULD continue until stopRecording()
is called, storage space is exhausted, or an error occurs. In this case it is
essential that stopRecording() is called later.

void stopRecording()

Description Stops the current recording started by recordNow.

Boolean pause()

Description If recording has not yet been started, this method will start recording the broadcast that
is currently being rendered live (i.e., not time-shifted) in the video/broadcast object.
If the OITF has buffered the ‘live’ broadcasted content, the recording starts with the
content that is currently being rendering in the video/broadcast object. If the
recording started successfully, the rendering of the broadcasted content is paused, i.e.
a still-image video frame is shown.

If the video/broadcast object is currently rendering a time-shifted broadcast
channel, playback of that time-shifted broadcast is paused.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 165 (289)

If trick play is not supported for the channel currently being rendered, this method shall
return false, otherwise true is returned.

This operation may be asynchronous, and presentation of the video may not pause
until after this method returns. For this reason, a PlaySpeedChanged event will be
generated when the operation has completed, regardless of the success of the
operation. If the operation fails, the argument of the event SHALL be set to the
previous play speed.

Boolean resume()

Description Resumes playback of the time-shifted broadcast channel that is currently being
rendered in the video/broadcast object at the speed specified by setSpeed(). If the
desired speed was not set via setSpeed, playback is resumed at normal speed (i.e.
speed 1.0). If the video/broadcast object is currently not rendering a time-shifted
channel, the OITF shall ignore the request to start playback and shall return false. If
playback cannot be resumed the OITF shall also return false, otherwise true is
returned.

This operation may be asynchronous, and presentation of the video may not resume
until after this method returns. For this reason, a PlaySpeedChanged event will be
generated when the operation has completed, regardless of the success of the
operation. If the operation fails, the argument of the event SHALL be set to the
previous play speed.

Boolean setSpeed(Number speed)

Description Sets the playback speed of the time-shifted broadcast to the value speed, without
changing the paused/resumed state of the time-shifted broadcast.

If the playback reaches the end of the time-shift buffer as a result of fastforwarding, the
playback speed will be set to normal speed (i.e. speed 1.0) and playback will continue
with live content. If during rewinding the playback has reaches the point that it cannot
be rewound further, playback SHALL resume at normal speed. In both cases, a
PlaySpeedChanged event SHALL be generated.

When playback is paused (i.e. by setting the play speed to 0), the last decoded frame
of video is displayed.

If the time-shifted broadcast cannot be played at the desired speed, specified as a
value relative to the normal playback speed, the playback speed will be set to the best
approximation of speed.

If the video/broadcast object is currently not rendering a time-shifted channel, the
OITF shall ignore the request to change the playback speed and shall return false,
otherwise true is returned.

This operation may be asynchronous, and presentation of the video may not be
affected until after this method returns. For this reason, a PlaySpeedChanged event
will be generated when the operation has completed, regardless of the success of the
operation. If the operation fails, the argument of the event SHALL be set to the
previous play speed.

Arguments speed The desired relative playback speed, specified as a float value relative to
the normal playback speed of 1.0. A negative value indicates reverse
playback. If the time-shifted broadcast cannot be played at the desired
speed, the playback speed will be set to the best approximation.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 166 (289)

Boolean seek(Integer offset, Integer reference)

Description Sets the playback position of the time-shifted broadcast that is being rendered in the
video/broadcast object to the position specified by the offset and the reference
point as specified by one of the constants defined in section 7.13.2.1. Playback of live
content is resumed if the new position equals the end of the time-shift buffer. Returns
true if the playback position is a valid position to seek to, false otherwise. If the
video/broadcast object is currently not rendering a time-shifted channel or if the
position falls outside the time-shift buffer, the OITF shall ignore the request to seek
and shall return the value false.

This operation may be asynchronous, and presentation of the video may not be
affected until after this method returns. For this reason, a PlayPositionChanged
event will be generated when the operation has completed, regardless of the success
of the operation. If the operation fails, the argument of the event SHALL be set to the
previous play position.

offset The offset from the reference position, in seconds. This can be either a
positive value to indicate a time later than the reference position or a
negative value to indicate time earlier than the reference position.

Arguments

reference The reference point from which the offset SHALL be measured. The
reference point can be either POSITION_CURRENT, POSITION_START,
or POSITION_END.

Boolean stopTimeshift()

Description Stops recording the broadcast that is currently being rendered in time-shifted mode in
the video/broadcast object and, if applicable, plays the current broadcast from the
live point and stops time-shifting the broadcast. The OITF SHALL release all resources
that were used to support time-shifted rendering of the broadcast

Returns true if the time-shifted broadcast was successfully stopped and resources
were released and false otherwise. If the video/broadcast object is currently not
rendering a time-shifted channel, the OITF shall ignore the request to stop the time-
shift and shall return the value false.

In addition to these methods, the OITF SHALL support an additional optional attribute “offSet” on the
setChannel(Channel channel, Boolean trickplay, String contentAccessDescriptorURL)
method of the video/broadcast object as defined in section 7.13.1.3, if the OITF has indicated support for scheduled
content over IP by defining one or more ID_IPTV_* values as part of the transport attribute of the
<video_broadcast> element in the capability description.

void setChannel(Channel channel, Boolean trickplay,

 String contentAccessDescriptorURL, Integer offset)

Description Requests the OITF to switch a (logical or physical) tuner to the specified channel and
render the received broadcast content in the area of the browser allocated for the
video/broadcast object, as specified by the setChannel(Channel channel,
Boolean trickPlay, String contentAccessDescriptorURL) method in
section 7.13.1.3.

The additional offSet attribute optionally specifies the desired offset with respect to
the live broadcast in number of seconds from which the OITF SHOULD start playback
immediately after the channel switch (whereby offSet is given as a positive value for
seeking to a time in the past). If an OITF cannot start playback from the desired
position, as indicated by the specified offSet (e.g. because the OITF did not, or could
not, record the specified channel prior to the call to setChannel), if the specified
offSet is ‘0’, or if the offSet is not specified, the OITF SHALL start playback from

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 167 (289)

the live position after the specified channel switch.

channel As defined for method setChannel()in section
7.13.1.3.

trickplay Optional flag as defined for method
setChannel()in section 7.13.1.3.

contentAccessDescriptorURL Optional attribute as defined for method
setChannel()in section 7.13.1.3.

Arguments

offset The optional offSet attribute MAY be used to
specify the desired offset with respect to the live
broadcast in number of seconds from which the
OITF SHOULD start playback immediately after the
channel switch (whereby offset is given as a
negative value for seeking to a time in the past).

7.13.2.4 Events
For the intrinsic events “onRecordingEvent”, “onPlaySpeedChanged” and “onPlayPositionChanged”,
corresponding DOM level 2 events SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onRecordingEvent RecordingEvent Bubbles: No

Cancelable: No

Context Info: state, error,
recordingId

onPlaySpeedChanged PlaySpeedChanged Bubbles: No

Cancelable: No

Context Info: speed

onPlayPositionChanged PlayPositionChanged Bubbles: No

Cancelable: No

Context Info: position

Note: the DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the video/broadcast object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.3 Extensions to video/broadcast for access to EIT p/f
The following properties and events SHALL be added to the video/broadcast embedded object, if the OITF has indicated
support for accessing DVB-SI EIT p/f information, by giving the value “true” to element <clientMetadata> and
the value “eit-pf” or “dvb-si” to the “type” attribute of that element as defined in section 9.3.7 in their capability
profile.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 168 (289)

Access to these properties SHALL adhere to the security model in section 10. The associated permission name is
“permission_metadata”.

readonly ProgrammeCollection programmes

The collection of programmes available on the currently tuned channel. This list is a
ProgrammeCollection as defined in section 7.16.3 and is ordered by start time, so index 0 will
always refer to the present programme (if this information is available).

If the type attribute of the <clientMetadata> element in the OITF’s capability description has the
value “eit-pf”, this list SHALL at least provide Programme objects as defined in section 7.16.2 for the
present and the directly following programme on the currently tuned channel, if that information is
available. In other words, the DAE application should not expect programmes.length to be larger
than 2.

If the video/broadcast object is not currently tuned to a channel, or if the present/following
information has not yet been retrieved (e.g. the object has just tuned to a new channel and
present/following information has not yet been broadcast), or if present/following information is not
available for the current channel, the length of this collection SHALL be 0.

If the type attribute of the <clientMetadata> element in the OITF’s capability description has a value
other than “eit-pf”, an OITF MAY populate this field from other metadata sources described in
[META].

The programmes.length property SHALL indicate the number of items that are currently known and
up to date (i.e. whereby the “startTime + duration” is not smaller than the current time). This may
be 0 if no programme information is currently known for the currently tuned channel.

In order to prevent misuse of this information, access to this property SHALL adhere to the security
model in section 10. The associated permission name is “permission_metadata”.

function onProgrammesChanged

The function that is called when the programmes property has been updated with new programme
information, e.g. when the current broadcast programme is finished and a new one has started.

For the intrinsic event “onProgrammesChanged”, corresponding DOM level 2 events SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onProgrammesChanged ProgrammesChanged Bubbles: No

Cancelable: No

Context Info: None

7.13.4 Extensions to video/broadcast for playback of selected
components

To support the selection of specific A/V components for playback (e.g. a specific subtitle language, audio language, or
camera angle), the classes defined in sections 7.16.5.2 – 7.16.5.5 SHALL be supported and the constants, properties and
methods defined in section 7.16.5.1 SHALL be supported on the video/broadcast object.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 169 (289)

7.13.5 Extensions to video/broadcast for parental ratings errors
For parental rating related errors or changes during playback of A/V content through the video/broadcast object an
OITF SHALL support the following intrinsic event properties and corresponding DOM 2 events for the
video/broadcast object:

function onParentalRatingChange(String contentID,

 ParentalRatingCollection ratings,

 String DRMSystemID, Boolean blocked)

The function that is called whenever the parental rating of the content being played inside the
embedded object changes.

These events may occur at the start of a new content item, or during playback of a content item (e.g.
during playback of linear TV content).

The specified function is called with four arguments contentID, rating, DRMSystemID and blocked
which are defined as follows:

• String contentID – the content ID to which the parental rating change applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context
of the DRM system (i.e. in the case of Marlin BB it is the Marlin contentID). Otherwise it MAY be
null or undefined.

• ParentalRatingCollection ratings – the parental ratings of the currently playing content.
The ParentalRatingCollection object is defined in section 7.9

• String DRMSystemID – the DRM System ID of the DRM system that generated the event as
defined by element DRMSystemID in Table 6 of [META]. The value SHALL be null if the
parental control is not enforced by a particular DRM system.

• Boolean blocked – flag indicating whether consumption of the content is blocked by the
parental control system as a result of the new parental rating value.

function onParentalRatingError(String contentID,

 ParentalRatingCollection ratings,

 String DRMSystemID)

The function that is called when a parental rating error occurs during playback of A/V content inside the
embedded object, and is triggered whenever one or more parental ratings are discovered and none of
them are valid. A valid parental rating id defined as one which uses a parental rating scheme that is
supported by the OITF and which has a parental rating value that is supported by the OITF.

The specified function is called with three arguments contentID, rating, and DRMSystemID which
are defined as follows:

• String contentID – the content ID to which the parental rating error applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context
of the DRM system (i.e. in the case of Marlin BB it is the Marlin contentID). Otherwise it MAY be
null or undefined.

• ParentalRatingCollection ratings – the parental ratings of the currently playing content.
The ParentalRatingCollection object is defined in section 7.9.

• String DRMSystemID – optional argument that specifies the DRM System ID of the DRM
system that generated the event as defined by element DRMSystemID in Table 6 of [META].
The value SHALL be null if the parental control is not enforced by a particular DRM system.

7.13.5.1 Events
For the intrinsic events “onParentalRatingChange” and “onParentalRatingError”, corresponding DOM
level 2 events SHALL be generated, in the following manner:

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 170 (289)

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onParentalRatingChange ParentalRatingChange Bubbles: No

Cancelable: No

Context Info: contentID, rating,
and DRMSystemID

onParentalRatingError ParentalRatingError Bubbles: No

Cancelable: No

Context Info: contentID,
ratings, and DRMSystemID.

Note: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving a ParentalRatingError event during the bubbling or the capturing phase. The
Applications that use DOM 2 event handlers SHALL call the addEventListener() method on the
video/broadcast object itself. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.6 Extensions to video/broadcast for DRM rights errors
This section SHALL apply to OITF and/or server devices which have indicated support for DRM protection by providing
one or more <drm> elements as specified in section 9.3.10:

For notifying JavaScript about DRM licensing errors during playback of DRM protected A/V content through the
“video/broadcast” object, an OITF SHALL support the following intrinsic event property and corresponding DOM
2 event for the “video/broadcast” object:

function onDRMRightsError(Integer errorState, String contentID,

 String DRMSystemID, String rightsIssuerURL)

The function that is called:

• Whenever a rights error occurs for the A/V content (no license, license invalid), which has lead
to blocking consumption of the content.

• Whenever a rights change occurs for the A/V content (license valid), which leads to unblocking
the consumption of the content.

This may occur during playback, recording or timeshifting of DRM protected AV content

The specified function is called with four arguments errorState, contentID, DRMSystemID and
rightsIssuerURL which are defined as follows:

• Integer errorState – error code detailing the type of error:

0: no license, consumption of the content is blocked.
1: invalid license, consumption of the content is blocked.
2: valid license, consumption of the content is unblocked

• String contentID – the unique identifier of the protected content in the scope of the DRM
system that raises the error (i.e. in the case of Marlin BB it is the Marlin contentID).

• String DRMSystemID – DRMSystemID as defined by element DRMSystemID in Table 6 of
[META]. For example, for Marlin, the DRMSystemID value is “urn:dvb:casystemid:19188”.

• String rightsIssuerURL – optional element indicating the value of the rightsIssuerURL that
can be used to non-silently obtain the rights for the content item currently being played for which
this DRM error is generated, in cases whereby the rightsIssuerURL is known. Cases

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 171 (289)

whereby the rightsIssuerURL is known include cases whereby the rightsIssuerURL has
been extracted from the MPEG2_TS of the protected content, retrieved from the SD&S
discovery record or from the associated BCG metadata. The corresponding rightsIssuerURL
fields are defined in section 4.1.3.4 of [CSP] and in section 3.3.2 of [META] respectively. If
different URLs are retrieved from the stream and the metadata, then the conflict resolution is
implementation-dependent.

For the intrinsic event “onDRMRightsError”, a corresponding DOM level 2 event SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onDRMRightsError DRMRightsError Bubbles: No

Cancelable: No

Context Info: errorState, contentID,
DRMSystemID, rightsIssuerURL

Note: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DRMRightsError event during the bubbling or the capturing phase. Applications that
use DOM 2 event handlers SHALL call the addEventListener() method on the video/broadcast object itself.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.7 Extensions to video/broadcast for current channel information
7.13.7.1 Properties

readonly Channel currentChannel

The channel currently being presented by this embedded object if the user has given permission to
share this information, possibly through a mechanism outside the scope of this specification. If no
channel is being presented, or if this information is not visible to the caller, the value of this property
SHALL be null.

7.13.8 Extensions to video/broadcast for creating channel lists from
SD&S fragments

If an OITF has indicated support for broadcast video using SD&S (e.g. by including an element <video_broadcast
type="ID_IPTV_SDS"> in its capability description), the OITF SHALL support the following additional method on
the video/broadcast object, in order to create a channel list from an SD&S fragment.

ChannelList createChannelList(String bdr)

Description Creates a ChannelList object from the specified SD&S Broadcast Discovery Record.
Channels in the returned channel list will not be included in the channel list that can be
retrieved via calls to getChannelConfig().

Arguments bdr An XML-encoded string containing an SD&S Broadcast Discovery Record as
specified in [META]. If the string is not a valid Broadcast Discovery Record,
this method SHALL return null.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 172 (289)

7.13.9 The ChannelConfig class
The ChannelConfig class provides the entry point for applications to get information about the list of channels available
for an OITF to present.

7.13.9.1 Properties

readonly ChannelList channelList

The list of channels.

If an OITF includes a platform-specific application that enables the end-user to choose a channel to be
presented from a list then all the channels in the list offered to the user by that application SHALL be
included in this ChannelList.

The list of channels will be a subset of all those available to the OITF. The precise algorithm by which
this subset is selected will be market and/or implementation dependent. For example;

• If an OITF with a DVB-T tuner receives multiple versions of the same channel, one would be
included in the list and the duplicates discarded

• An OITF with a DVB tuner will often filter services based on service type to discard those which
are obviously inappropriate or impossible for that device to present to the end-user, e.g.
firmware download services.

The order of the channels in the list corresponds to the channel ordering as managed by the OITF.
SHALL return the value null if the channel list is not (partially) managed by the OITF (i.e., if the
channel list information is managed entirely in the network).

The properties of channels making up the channel list SHALL be set by the OITF to the appropriate
values as determined by the tables in section 8.4.3. The OITF SHALL store all these values as part of
the channel list.

Some values are set according to the data carried in the broadcast stream. In this case, the OITF MAY
set these values to undefined until such time as the relevant data has been received by the OITF, for
example after tuning to the channel. Once the data has been received, the OITF SHALL update the
properties of the channel in the channel list according to the received data.

Note: There is no requirement for the OITF to pro-actively tune to every channel to gather such data.

readonly FavouriteListCollection favouriteLists

A list of favourite lists. SHALL return the value null if the favourite lists are not (partially) managed by
the OITF (i.e., if the favourite lists information is managed entirely in the network).

readonly String currentFavouriteList

Currently active Favourite channel list given as the ID of one of the favourite list inside favouriteLists. If
currentFavouriteList is the empty string, no favourite filter list is currently applied and all channels
are 'selected'.

SHALL return the value null if the favourite lists are not (partially) managed by the OITF (i.e. if the
favourite lists information is managed entirely in the network).

function onChannelListUpdate

This function is the DOM 0 event handler for events relating to channel list updates. Upon receiving a
ChannelListUpdate event, if an application has references to any Channel objects then it SHOULD
dispose of them and rebuild its references. Where possible Channel objects are updated rather than
removed, but their order in the ChannelConfig.all collection MAY have changed. Any lists created with
ChannelConfig.createFilteredList() SHOULD be recreated in case channels have been removed.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 173 (289)

7.13.9.2 Methods

ChannelList createFilteredList(Boolean blocked, Boolean favourite,

 Boolean hidden, String favouriteListID)

Description Create a filtered list of channels. Returns a subset of ChannelConfig.channelList.

The blocked, favourite and hidden flags indicate whether a channel is included in the
returned list. These flags correspond to the properties on Channel with the same
names. Each flag MAY be set to one of three values:

Value Meaning

true The channel is added if and only if the corresponding property has
the value true.

false The channel is added if and only if the corresponding property has
the value false.

undefined The channel is added regardless of the state of the corresponding
property.

A channel will only be added to the list if the values of all three flags allow it to be
added.

The favouriteListID attribute is used to select a particular favouriteList that
the createFilteredList method uses as a basis of the filtering process. If
favouriteListID is the empty string (i.e. “”), then the filtering is performed on all
available channels as defined by ChannelConfig.channelList.

blocked Flag indicating whether manually blocked
channels SHALL be added to the list.

favourite Flag indicating whether favourite channels
SHALL be added to the list.

hidden Flag indicating whether hidden channels SHALL
be added to the list.

Arguments

favouriteListID If the value of the favourite flag is true,
indicates which favourites list SHALL be filtered
upon.

7.13.9.3 Events
For the intrinsic event “onChannelListUpdate”, corresponding DOM level 2 events SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM
2 event

DOM 2 Event properties

onChannelListUpdate ChannelListUpdate Bubbles: No

Cancelable: No

Context Info: none

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 174 (289)

Note: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the ChannelConfig object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.10 The ChannelList class
The ChannelList object represents a list of channels. Next to the properties and methods defined below a
ChannelList object SHALL support the array notation to access the Channel objects in this collection.

7.13.10.1 Properties

readonly Integer length

The number of items in the list.

7.13.10.2 Methods

Channel item(Integer index)

Description Return the channel at position index in the list, or undefined if no item is present at
that position.

The position can also be specified using array bracket notation instead of calling this
method directly.

Arguments index The index of the item to be retrieved.

Channel getChannel(String channelID)

Description Return the first channel in the list with the specified channel identifier. Returns null if
no corresponding channel can be found.

Arguments channelID The channel identifier of the channel to be retrieved, which is a value
as defined for property “ccid” of the Channel object or a value as
defined for property “ipBroadcastID” of the Channel object as
defined in section 7.13.11.

Channel getChannelByTriplet(Integer onid, Integer tsid, Integer sid)

Description Return the first (IPTV or non-IPTV) channel in the list that matches the specified DVB
or ISDB triplet (original network ID, transport stream ID, service ID).

Where no channels of type ID_ISDB_* or ID_DVB_* are available, or no channel
identified by this triplet are found, this method SHALL return null.

onid The original network ID of the channel to be retrieved.

tsid The transport stream ID of the channel to be retrieved. If set to null the
client SHALL retrieve the channel defined by the combination of onid and sid.
This makes it possible to retrieve the correct channel also in case a
remultiplexing took place which led to a changed tsid.

Arguments

sid The service ID of the channel to be retrieved.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 175 (289)

Channel getChannelBySourceID(Integer sourceID)

Description Return the first (IPTV or non-IPTV) channel in the list with the specified ATSC source
ID.

Where no channels of type ID_ATSC_* are available, or no channel with the specified
source ID is found in the channel list, this method SHALL return null.

Arguments sourceID The ATSC source_ID of the channel to be returned.

7.13.11 The Channel class
The Channel object represents a broadcast stream or service.

Channel objects typically represent channels stored in the channel list (see 7.13.10). Channel objects may also represent
locally defined channels created by an application using the createChannelObject methods on the video/broadcast
embedded object or the channelConfig class or the createChannelList method on the channelConfig class. Accessing the
channel property of a ScheduledRecording object or Recording object which is scheduled on a locally defined channel
SHALL return a Channel object representing that locally defined channel.

7.13.11.1 Constants

Name Value Use

TYPE_TV 0 Used in the channelType property to indicate a TV channel.

TYPE_RADIO 1 Used in the channelType property to indicate a radio channel.

TYPE_HBBTV_DATA 256 Reserved for data services defined by [TS 102 796].

ID_ANALOG 0 Used in the idType property to indicate an analogue channel identified by
the property: ‘freq’ and optionally ‘cni’ or ‘name’.

ID_DVB_C 10 Used in the idType property to indicate a DVB-C channel identified by the
three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_S 11 Used in the idType property to indicate a DVB-S channel identified by the
three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_T 12 Used in the idType property to indicate a DVB-T channel identified by the
three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_SI_DIRECT 13 Used in the idType property to indicate a channel that is identified through
its delivery system descriptor as defined by DVB-SI [EN300468] section
6.2.13.

ID_DVB_C2 14 Used in the idType property to indicate a DVB-C or DVB-C2 channel
identified by the three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_S2 15 Used in the idType property to indicate a DVB-S or DVB-S2 channel
identified by the three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_T2 16 Used in the idType property to indicate a DVB-T or DVB-T2 channel
identified by the three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_ISDB_C 20 Used in the idType property to indicate an ISDB-C channel identified by
the three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_ISDB_S 21 Used in the idType property to indicate an ISDB-S channel identified by
the three properties: ‘onid’, ‘tsid’, ‘sid’.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 176 (289)

Name Value Use

ID_ISDB_T 22 Used in the idType property to indicate an ISDB-T channel identified by
the three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_ATSC_T 30 Used in the idType property to indicate a terrestrial ATSC channel
identified by the property ‘sourceID’.

ID_IPTV_SDS 40 Used in the idType property to indicate an IP broadcast channel identified
through SD&S by a DVB textual service identifier specified in the format
“ServiceName.DomainName” as value for property ‘ipBroadcastID’, with
ServiceName and DomainName as defined in [DVB-IPTV]. This idType
SHALL be used to indicate Scheduled content service defined by [PROT]

ID_IPTV_URI 41 Used in the idType property to indicate an IP broadcast channel identified
by a DVB MCAST URI (e.g. i.e. dvb-mcast://), as value for property
‘ipBroadcastID’.

7.13.11.2 Properties
This section defines the properties of the Channel object.

Properties that do not apply in a specific circumstance (e.g. onid does not apply unless the channel is of type ID_DVB_*
or ID_ISDB_*) SHALL be undefined. The mapping to these properties is defined in section 8.4.3.

readonly Integer channelType

The type of channel. The value MAY be indicated by one of the TYPE_* constants defined above. If the
type of the channel is unknown then the value SHALL be “undefined”.

NOTE: Values of this type between 256 and 511 are reserved for use by related specifications on request
by liaison.

readonly Integer idType

The type of identification for the channel, as indicated by one of the ID_* constants defined above

readonly String ccid

Unique identifier of a channel within the scope of the OITF. The ccid is defined by the OITF and SHALL
have prefix ‘ccid: e.g. ‘ccid:{tunerID.}majorChannel{.minorChannel}’.

Note: the format of this string is platform-dependent.

readonly String tunerID

Optional unique identifier of the tuner within the scope of the OITF that is able to receive the given
channel.

readonly Integer onid

DVB or ISDB original network ID.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 177 (289)

readonly Integer nid

The DVB or ISDB network ID.

readonly Integer tsid

DVB or ISDB transport stream ID.

readonly Integer sid

DVB or ISDB service ID.

readonly Integer sourceID

ATSC source_ID value.

readonly Integer freq

For analogue channels, the frequency of the video carrier in kHz.

readonly Integer cni

For analogue channels, the VPS/PDC confirmed network identifier.

readonly String name

The name of the channel. Can be used for linking analog channels without CNI. Typically, it will contain the
call sign of the station (e.g. 'HBO').

readonly Integer majorChannel

The major channel number, if assigned. Value undefined otherwise. Typically used for channels of type
ID_ATSC_* or for channels of type ID_DVB_* or ID_IPTV_SDS in markets where logical channel numbers
are used.

readonly Integer minorChannel

The minor channel number, if assigned. Value undefined otherwise. Typically used for channels of type
ID_ATSC_*.

readonly String dsd

For channels of type ID_DVB_SI_DIRECT created through createChannelObject, this property defines
the delivery system descriptor (tuning parameters) as defined by DVB-SI [EN300468] section 6.2.13.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 178 (289)

The dsd property provides a string whose characters shall be restricted to the ISO Latin-1 character set.
Each character in the dsd represents a byte of a delivery system descriptor as defined by DVB-SI
[EN300468] section 6.2.13, such that a byte at position "i" in the delivery system descriptor is equal the
Latin-1 character code of the character at position "i" in the dsd.

Described in the syntax of JavaScript: let sdd[] be the byte array of a system delivery descriptor, in which
sdd[0] is the descriptor_tag, then, dsd is its equivalent string, if :

 dsd.length==sdd.length and

 for each integer i : 0<=i<dsd.length holds: sdd[i] == dsd.charCodeAt(i).

readonly Boolean favourite

Flag indicating whether the channel is marked as a favourite channel or not in one of the favourite lists as
defined by property favouritelists.

readonly StringCollection favIDs

The names of the favourite lists to which this channel belongs (see property favLists on object
ChannelConfig).

readonly Boolean locked

Flag indicating whether the current state of the parental control system prevents the channel from being
viewed (e.g. a correct parental control pin has not been entered).

Note that this property supports the option of client-based management of parental control without
excluding server-side implementation of parental control.

readonly Boolean manualBlock

Flag indicating whether the user has manually blocked viewing of this channel. Manual blocking of a
channel will treat the channel as if its parental rating value always exceeded the system threshold.

Note that this property supports the option of client-based management of manual blocking without
excluding server-side management of blocked channels.

readonly String ipBroadcastID

If the Channel has idType ID_IPTV_SDS, this element denotes the DVB textual service identifier of the IP
broadcast service, specified in the format “ServiceName.DomainName” with the ServiceName and
DomainName as defined in [DVB-IPTV].

If the Channel has idType ID_IPTV_URI, this element denotes a URI of the IP broadcast service.

readonly Integer channelMaxBitRate

If the channel has id Type ID_IPTV_SDS, this element denotes the maximum bitrate associated to the
channel.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 179 (289)

readonly Integer channelTTR

If the channel has idType ID_IPTV_SDS, this element denotes the TimeToRenegotiate associated to the
channel.

readonly Boolean recordable

Flag indicating whether the channel is available to the recording functionality of the OITF. If the value of the
pvrEnabled property on the application/oipfConfiguration object as defined in section 7.3.2.1 is
false, this property SHALL also be false for all Channel objects.

7.13.11.3 Metadata extensions to Channel
This subsections SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a “type”
attribute with values “bcg” or “sd-s” as defined in section 9.3.7 in their capability profile.

The OITF SHALL extend the Channel class with the properties and methods described below.

The values of many of these properties may be derived from elements in the BCG metadata. For optional elements that
are not present in the metadata, the default value of any property that derives its value from one of those elements
SHALL be undefined.

7.13.11.3.1 Properties

readonly String longName

The long name of the channel. If both short and long names are being transmitted, this property SHALL
contain the long name of the station (e.g. 'Home Box Office'). If the long name is not available, this
property SHALL be undefined.

The value of this property may be derived from the Name element that is a child of the BCG
ServiceInformation element describing the channel, where the length attribute of the Name
element has the value ‘long’.

readonly String description

The description of the channel. If no description is available, this property SHALL be undefined.

The value of this field may be taken from the ServiceDescription element that is a child of the BCG
ServiceInformation element describing this channel.

readonly Boolean authorised

Flag indicating whether the receiver is currently authorised to view the channel. This describes the
conditional access restrictions that may be imposed on the channel, rather than parental control
restrictions.

readonly StringCollection genre

A collection of genres that describe the channel.

The value of this field may be taken from the ServiceGenre elements that are children of the BCG
ServiceInformation element describing the channel.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 180 (289)

Boolean hidden

Flag indicating whether the channel SHALL be included in the default channel list.

string logoURL

The URL for the default logo image for this channel.

The value of this field may be derived from the value of the first Logo element that is a child of the BCG
ServiceInformation element describing the channel. If this element specifies anything other than
the URL of an image, the value of this filed SHALL be undefined.

7.13.11.3.2 Methods

String getField(String fieldId)

Description Get the value of the field referred to by fieldId that is contained in the BCG
metadata for this channel. If the field does not exist, this method SHALL return
undefined.

Arguments fieldId The name of the field whose value SHALL be retrieved.

String getLogo(Integer width, Integer height)

Description Get the URI for the logo image for this channel. The width and height parameters
specify the desired width and height of the image; if an image of that size is not
available, the URI of the logo with the closest available size not exceeding the
specified dimensions SHALL be returned. If no image matches these criteria, this
method SHALL return null.

The URI returned SHALL be suitable for use as the SRC attribute in an HTML IMG
element or as a background image.

The URIs returned by this method will be derived from the values of the Logo
elements that are children of the BCG ServiceInformation element describing the
channel .

width The desired width of the image Arguments

height The desired height of the image

7.13.12 The FavouriteListCollection class
The FavouriteListCollection object represents a read-only collection of FavouriteList objects. Items in the
collection can be accessed using array notation. Next to the properties and methods defined below a
FavouriteListCollection object SHALL support the array notation to access the FavouriteList objects in this
collection.

7.13.12.1 Properties

readonly Integer length

The number of items in the collection.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 181 (289)

7.13.12.2 Methods

FavouriteList getFavouriteList(String favID)

Description Return the first favourite list in the collection with the given favListID.

Arguments favID The ID of a favourite list.

FavouriteList item(Integer index)

Description Return the item at position index in the collection, or undefined if no item is present
at that position.

The position can also be specified using array bracket notation instead of calling this
method directly.

Arguments index The index of the item that SHALL be returned.

7.13.12.3 Extensions to FavouriteListCollection
If an OITF has indicated support for extended tuner control (i.e. by giving value true to element
<extendedAVControl> as specified in section 9.3.6 in its capability description), the OITF SHALL support the
following additional constants and methods on the FavouriteListCollection object.

The functionality as described in this section is subject to the security model of section 10.1.3.8.

Integer createFavouriteList()

Description Create a new favourite list and add it to the collection. The ID of the new favourite list
SHALL be returned.

Boolean remove(Integer index)

Description Remove the list at the specified index from the collection. This method SHALL return
true of the operation succeeded, or false if an invalid index was specified.

Arguments index The index of the list to be removed.

Boolean commit()

Description Commit any changes to the collection to persistent storage. This method SHALL
return true of the operation succeeded, or false if it failed (e.g. due to insufficient
space to store the collection).

If a server has indicated that it requires control of the tuner functionality of an OITF in
the server capability description for a particular service, then the OITF SHOULD send
an updated Client Channel Listing to the server using HTTP POST over TLS as
described in section 4.8.1.1.

7.13.13 The FavouriteList class
The FavouriteList object represents a list of favourite channels. Next to the properties and methods defined below a
FavouriteList object SHALL support the array notation to access the favourite channels in this collection.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 182 (289)

7.13.13.1 Properties

readonly String favID

A unique identifier by which the favourite list can be identified

readonly String name

A descriptive name given to the favourite list

readonly Integer length

The number of items in the list.

7.13.13.2 Methods

Channel item(Integer index)

Description Return the channel at position index in the favourite list, or undefined if no item is
present at that position.

The position can also be specified using array bracket notation instead of calling this
method directly.

Arguments index The index of the item to be retrieved

Channel getChannel(String channelID)

Description Return the first channel in the favourite list with the specified channel identifier.
Returns null if no corresponding channel can be found.

Arguments channelID The channel identifier of the channel to be retrieved, which is a value
as defined for property “ccid” of the Channel object or a value as
defined for property “ipBroadcastID” of the Channel object as
defined in section 7.13.11..

Channel getChannelByTriplet(Integer onid, Integer tsid, Integer sid)

Description Return the first (IPTV or non-IPTV) channel in the list that matches the specified DVB
or ISDB triplet (original network ID, transport stream ID, service ID).

Where no channels of type ID_ISDB_* or ID_DVB_* are available, or no channel
identified by this triplet are found, this method SHALL return null.

onid The original network ID of the channel to be retrieved.

tsid The transport stream ID of the channel to be retrieved. If set to null the
client SHALL retrieve the channel defined by the combination of onid and
sid. This makes it possible to retrieve the correct channel also in case a
remultiplexing took place which led to a changed tsid.

Arguments

sid The service ID of the channel to be retrieved.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 183 (289)

Channel getChannelBySourceID(Integer sourceID)

Description Return the first (IPTV or non-IPTV) channel in the list with the specified ATSC source
ID.

Where no channels of type ID_ATSC_* are available, or no channel with the specified
source ID is found in the channel list, this method SHALL return null.

Arguments sourceID The ATSC source_ID of the channel to be returned.

7.13.13.3 Extensions to FavouriteList
If an OITF has indicated support for extended tuner control (i.e. by giving value true to element
<extendedAVControl> as specified in section 9.3.6 in its capability description), the OITF SHALL support the
following additional constants and methods on the FavouriteList object.

The name property of the FavouriteList object SHALL be read/write for OITFs which are controlled by a service
provider. The following methods SHALL also be supported:

Boolean insertBefore(Integer index, String ccid)

Description Insert a new favourite into the favourites list at the specified index. This method
SHALL return true of the operation succeeded, or false if an invalid index was
specified (e.g. index > (length – 1)).

index The index in the list before which the favourite should be inserted. Arguments

ccid The ccid of the channel to be added.

Boolean remove(Integer index)

Description Remove the item at the specified index from the favourites list. Returns true of the
operation succeeded, or false if an invalid index was specified.

Arguments index The index of the item to be removed.

Boolean commit()

Description Commit any changes to the favourites list to persistent storage. This method SHALL
return true of the operation succeeded, or false if it failed (e.g. due to insufficient
space to store the list on the OITF).

If a server has indicated that it requires control of the tuner functionality of an OITF in
the server capability description for a particular service, then the OITF SHOULD send
an updated Client Channel Listing to the server using HTTP POST over TLS as
described in section 4.8.1.1.

7.14 Media playback APIs
This section specifies several extensions to the audio object and the video object defined in section 5.7.1 of [CEA2014A].
It also contains a subsection (i.e. section 7.14.10) that defines the audio playback from memory API.

7.14.1 The CEA 2014 A/V Control embedded object
An OITF SHALL support a CEA 2014 A/V Control object as defined in section 5.7.1 of [CEA2014A] for all mandatory
media formats.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 184 (289)

7.14.1.1 State diagram for A/V control objects
The following state transition diagram SHOULD be used for an A/V control object:

Figure 14: State diagram for embedded A/V Control objects (normative)

The following clarifications apply:

1. A detailed description for all the states in this state diagram is given in Annex B, bullet “changes to section 5.7”,
subbullet “Requirement 5.7.1.f bullet 4) ‘playState’”.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 185 (289)

2. Scarce resources for playback using the A/V Control object, such as the MPEG decoder, are claimed during
state 3 (‘connecting’), state 4 (‘buffering’) or during state transitions from state 3 (‘connecting’) to
state 4 (‘buffering’), from state 4 (‘buffering’) to state 1 (‘playing’) or from state 0 ('stopped') or
from state 3 ('connecting') to state 2 ('paused'). If at any point in time during playback the scarce resources
are not available anymore, due to a resource conflict, then the play state of the A/V object SHALL be set to 6
(‘error’) with a detailed error code of 3 (‘insufficient resources’). Scarce resources for playback
using the A/V Control object SHALL be released when state 6 (‘error’) or 0 (‘stopped’) or
5 (‘finished’) are reached. In addition, if the A/V object gets destroyed, e.g. because another URL is loaded
into the containing window, scarce resources claimed for playback using the A/V object SHALL be released,
except in cases described for the optional ‘persist’ property of A/V objects.

3. When the ‘data’ attribute and/or the ‘type’ attribute of the HTMLObjectElement representing the A/V
object is given a different value, the object SHALL go to state 0 (‘stopped’).

4. For playback of DRM protected content, the rights for playback are retrieved during state 3 (‘connecting’).

5. If the play position reaches the end of the available content the A/V Control object SHALL be set to state 5
(‘finished’) in addition to generating a playback speed change of zero.

If there is an attempt to play() with a speed in the positive direction (forward or > 1) and there is no content
available then the request fails.

6. If the play position reaches the beginning of the available content the A/V object SHALL be set to state 2
(‘paused’) in addition to generating a playback speed change of zero.

If there is an attempt to play() with a speed in the negative direction (rewind or < -1) and there is no content
available then the request fails.

7. If seek() is performed beyond the available content the request is rejected and the current playout is
maintained.

8. The visibility of an A/V object SHALL NOT affect its state or its use of scarce resources. An A/V object which
is hidden which is hidden using one of the following techniques:

 the CSS visibility or opacity properties

 using the CSS display:none rule

 removed from the document’s DOM

 obscured by other elements

 positioned off the visible area of the screen

SHALL still be decoding video if it is in the playing state and any audio associated with the currently playing
media will still be audible. State transitions caused by calls to methods on the A/V object, or due to permanent
or transient errors, will occur as shown above regardless of the visibility of the object. section 4.4.4 describes the
effect on scarce resources when an A/V object is removed from the DOM tree.

9. When an AV Control object is destroyed (e.g. by the AV Control object being garbage collected, or because of a
page transition within the application), presentation of streamed audio or video shall be terminated.

10. When not presenting video, the AV Control object SHALL be rendered as an opaque black rectangle.

7.14.1.2 Using an A/V control object to play streaming content
If an A/V control object is used to play streamed content using either RTSP or HTTP the OITF then the following holds:

 If play(0) is called in state 0 (‘stopped’), the A/V object SHALL automatically go to play state 2
('paused'). The necessary resources are secured and no external signalling is performed.

 If play(0) is called in the connecting or buffering state, the A/V object SHALL automatically go to play state
2 ('paused')

7.14.1.3 Using an A/V control object to play downloaded content
If an A/V control object is used to play content that has been downloaded and stored on the OITF on the OITF (by using
method setSource() as defined in section 7.14.7) then the following holds:

1. if the download was triggered using registerDownloadURL or the download was triggered using a Content
Access Download Descriptor with <TransferType> value “playable_download” as defined in Annex E.1, then:

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 186 (289)

a) if the play() method is called before sufficient data has been download to initiate playback, then the
play state of the A/V object SHALL be set to 6 (‘error’) with a detailed error code of 5 (“content not
available”).

2. if the downloaded content was triggered using a Content Access Download Descriptor with <TransferType>
value “full_download” as defined in Annex E.1, then:

a) if the play() method is called whilst the content is still downloading and has not yet successfully
completed, then the play state of the A/V object SHALL be set to 6 (‘error’) with a detailed error code
of 5 (“content not available”).

7.14.1.4 Using an A/V control object to play recorded content
If an A/V control object is used to play content that has been recorded or is being recorded on the OITF (by using method
setSource() as defined in section 7.14.7) then the following holds:

 if the play() method is called before sufficient data has been recorded to initiate playback, then the play state
of the A/V object SHALL be set to 6 (‘error’) with a detailed error code of 5 (“content not available”).

7.14.2 Extensions to A/V object for playback through Content-Access
Streaming Descriptor

As specified in section 4.7.1, an OITF SHALL support setting up the A/V stream using the information provided by a
valid Content Access Streaming Descriptor referred to by the ‘data’ attribute. To this end, the OITF SHALL fetch the
Content Access Streaming Descriptor from the URL provided by the “data” attribute, after which the descriptor SHALL
be interpreted, resulting in an appropriate <ContentURL> to be selected (e.g. based on which DRM system the OITF
supports). The OITF SHALL then initiate a streaming CoD session to the selected <ContentURL>, after which playback
can be started when the play() method is invoked.

The OITF SHALL pass included DRM-information of the selected content and DRM system ID as part of the
<DRMControlInformation> elements of a Content Access Streaming Descriptor to the DRM agent, if it supports a
DRM agent with a matching DRMSystemID as per section 9.3.10.

If the Content Access Streaming Descriptor is not valid according to the XML Schema and semantics as defined in
Annex E.2, the A/V control object SHALL go to playState 6 (i.e. error), with error value 4, which is defined as follows
in addition to the error states identified by bullet 5 of [Req. 5.7.1.f] of CEA-2014-A.:

 4: content corrupt or invalid.

For more information about setting up the A/V stream based on a Content Access Streaming descriptor, see section 4.7.1,
section 8 and Annex D.

7.14.3 Extensions to A/V object for trickmodes
7.14.3.1 Properties
The following additional properties SHALL be supported on the audio object and video object defined in section 5.7.1 of
[CEA2014A].

function onPlaySpeedChanged(Number speed)

The function that is called when the playback speed of the media changes.

The specified function is called with one argument, speed, which is defined as follows:

• Number speed – the playback speed of the media at the time the event was dispatched.

The behaviour of the AV control object when the end of media (or the end of the currently-available
media) is reached is defined in section 7.14.1.

function onPlayPositionChanged(Integer position)

The function that is called when change occurs in the play position of the media due to the use of trick
play functions.

The specified function is called with one argument, position, which is defined as follows:

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 187 (289)

• position – the playback position of the media at the time the event was dispatched,
measured in milliseconds since the beginning of the referenced media as denoted by the server.

The behaviour of the AV control object when the end of media (or the end of the currently-available
media) is reached is defined in section 7.14.1.

readonly Number playSpeeds[]

Returns an ordered list of playback speeds, expressed as values relative to the normal playback speed
(1.0), at which the currently specified A/V content can be played (either through an CEA-2014 audio or
video object), or undefined if the supported playback speeds are not (yet) known.

readonly String oitfSourceIPAddress

The OITF source IP address for RTSP or HTTP signalling, as well as, the address where the RTSP
stream is expected to arrive. The information shall be available in “buffering”, “paused” or
“playing” states.

readonly String oitfSourcePortAddress

The OITF Port Address where the RTSP stream is expected to arrive. The information shall be
available in “buffering”, “paused” or “playing” states.

Boolean oitfNoRTSPSessionControl

When the oitfNoRTSPSessionControl is set to true then the OITF shall not signal the RTSP
messages DESCRIBE, SETUP or TEARDOWN.

String oitfRTSPSessionId

The sessionId to be used by the AV Control Object when signalling RTSP. This property is only
applicable when property oitfNoRTSPSessionControl is set to true.

7.14.3.2 Events
For the intrinsic events “onPlaySpeedChanged” and “onPlayPositionChanged”, corresponding DOM level 2
events SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onPlaySpeedChanged PlaySpeedChanged Bubbles: No

Cancelable: No

Context Info: speed

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 188 (289)

onPlayPositionChanged PlayPositionChanged Bubbles: No

Cancelable: No

Context Info: position

Note: the DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the A/V Control object itself. The third parameter of
addEventListener, i.e. “useCapture”, will be ignored.

7.14.4 Extensions to A/V object for playback of selected components
To support the selection of specific A/V components for playback (e.g. a specific subtitle language, audio language, or
camera angle), the classes defined in sections 7.16.5.2 – 7.16.5.5 SHALL be supported and the constants, properties and
methods defined in section 7.16.5.1 SHALL be supported on the A/V Control object.

7.14.5 Extensions to A/V object for parental rating errors
For parental rating errors during playback of A/V content through the CEA-2014 A/V Control object (as defined in
section 5.7.1 of [CEA2014A]) an OITF SHALL support the following intrinsic event properties and corresponding DOM
2 events, for the CEA-2014 A/V Control object

function onParentalRatingChange(String contentID,

 ParentalRatingCollection ratings,

 String DRMSystemID, Boolean blocked)

The function that is called whenever the parental rating of the content being played inside the A/V Control
object changes.

These events may occur at the start of a new content item, or during playback of a content item (e.g.
during playback of A/V streaming content).

The specified function is called with four arguments contentID, rating, and DRMSystemID which are
defined as follows:

• String contentID – the content ID to which the parental rating change applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of
the DRM system (i.e. in the case of Marlin BB it is the Marlin contentID). Otherwise, it MAY be
null or undefined.

• ParentalRatingCollection ratings – the parental ratings of the currently playing content. The
ParentalRatingCollection object is defined in section 7.9.

• String DRMSystemID – optional argument that specifies the DRM System ID of the DRM system
that generated the event as defined by element DRMSystemID in Table 6 of [META]. The value
SHALL be null if the parental control is not enforced by a particular DRM system.

• Boolean blocked – flag indicating whether consumption of the content is blocked by the parental
control system as a result of the new parental rating value.

function onParentalRatingError(String contentID,

 ParentalRatingCollection ratings,

 String DRMSystemID)

The function that is called when a parental rating error occurs during playback of A/V content inside the
A/V Control object, and is triggered whenever one or more parental ratings are discovered and none of
them are valid. A valid parental rating is defined as one which uses a parental rating scheme that is
supported by the OITF and which has a parental rating value that is supported by the OITF.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 189 (289)

The specified function is called with three arguments contentID, rating, and DRMSystemID which are
defined as follows:

• String contentID – the content ID to which the parental rating error applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of
the DRM system (i.e. in the case of Marlin BB it is the Marlin contentID). Otherwise, it MAY be
null or undefined.

• ParentalRatingCollection ratings – the parental rating value of the currently playing
content. The ParentalRatingCollection object is defined in section 7.9.

• String DRMSystemID – optional argument that specifies the DRM System ID of the DRM system
that generated the event as defined by element DRMSystemID in Table 6 of [META]. The value
SHALL be null if the parental control is not enforced by a particular DRM system.

7.14.5.1 Events
For the intrinsic events “onParentalRatingChange” and “onParentalRatingError”, corresponding DOM
level 2 events SHALL be generated, in the following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onParentalRatingChange ParentalRatingChange Bubbles: No

Cancelable: No

Context Info: contentID, rating, and
DRMSystemID

onParentalRatingError ParentalRatingError Bubbles: No

Cancelable: No

Context Info: contentID, ratings,
and DRMSystemID.

Note: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving a ParentalRatingError event during the bubbling or the capturing phase. The
applications that use DOM 2 event handlers SHALL call the addEventListener() method on the CEA-2014 A/V
embedded object. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.6 Extensions to A/V object for DRM rights errors
This section SHALL apply to OITF and/or server devices which have indicated support for DRM protection by providing
one or more <drm> elements as specified in section 9.3.10:

For notifying JavaScript about DRM licensing errors during playback of DRM protected A/V content through the CEA-
2014 A/V Control object (as defined by as defined in section 5.7.1 of CEA-2014-A) an OITF SHALL support the
following intrinsic event property and corresponding DOM 2 event, for the CEA-2014 A/V Control object.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 190 (289)

function onDRMRightsError(Integer errorState, String contentID,

 String DRMSystemID, String rightsIssuerURL)

The function that is called:

• Whenever a rights error occurs for the A/V content (no license, license invalid), which has lead to
blocking consumption of the content.

• Whenever a rights change occurs for the A/V content (license valid), which leads to unblocking the
consumption of the content.

This may occur during playback, recording or timeshifting of DRM protected AV content

The specified function is called with four arguments errorState, contentID, DRMSystemID and
rightsIssuerURL which are defined as follows:

• Integer errorState – error code detailing the type of error:

0: no license, consumption of the content is blocked
1: invalid license, consumption of the content is blocked
2: valid license, consumption of the content is unblocked

• String contentID – the unique identifier of the protected content in the scope of the DRM system
that raises the error (i.e. in the case of Marlin BB it is the Marlin contentID).

• String DRMSystemID – DRMSystemID as defined by element DRMSystemID in Table 6 of
[META]. For example, for Marlin, the DRMSystemID value is “urn:dvb:casystemid:19188”.

• String rightsIssuerURL – optional element indicating the value of the rightsIssuerURL that can
be used to non-silently obtain the rights for the content item currently being played for which this
DRM error is generated, in cases whereby the rightsIssuerURL is known. Cases whereby the
rightsIssuerURL is known include cases whereby the rightsIssuerURL has been extracted from the
MPEG2_TS of the protected content, retrieved from the SD&S discovery record or from the
associated BCG metadata. The corresponding rightsIssuerURL fields are defined in section 4.1.3.4
of [CSP] and in section 3.3.2 of [META] respectively. If different URLs are retrieved from the stream
and the metadata, then the conflict resolution is implementation-dependent.

For the intrinsic event “onDRMRightsError”, a corresponding DOM level 2 event SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onDRMRightsError DRMRightsError Bubbles: No

Cancelable: No

Context Info: errorState, contentID,
DRMSystemID, rightsIssuerURL

Note: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DRMRightsError event during the bubbling or the capturing phase. Applications
that use DOM 2 event handlers SHALL call the addEventListener() method on the CEA-2014 A/V Control object.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.7 Extensions to A/V object for playing media objects
To support integration between sections 7.12, 7.4.6 and 7.4 of this specification and the A/V Control object defined in
[CEA2014A], OITFs SHOULD add the method defined below on the A/V Control object if any of the APIs defined in
those sections are supported.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 191 (289)

Boolean setSource(String id)

Description Change the content item to be played by the A/V control object to the content item
represented by id. Valid ids include:

a) Download identifiers (i.e. corresponding to property Download.id)

b) Recording identifiers (i.e. corresponding to property Recording.id)

c) CODAsset identifiers (i.e. corresponding to property CODAsset.uid)

Support for each of these identifier types depends on the support for the individual
sections in which they are defined.

Depending on the type of content for id, the following semantics apply:

If id is a download identifier, the OITF SHALL change the content item to be played to the
downloaded item, or item being downloaded, for which the Download.id property (as
defined in section 7.4.4.1) corresponds to the given download identifier. The type
attribute of the A/V control object SHOULD change to the MIME type of the content item
represented by the download identifier, or the MIME type of the content item
corresponding to the first content item listed in the Content Access Download Descriptor in
case the download identifier represents a download of a Content Access Download
Descriptor that contains multiple <ContentItem> elements. The data attribute SHALL
change to the same value as the download identifier. Section 7.14.2 defines more details
about playback of downloaded content, and how it relates to the states of the A/V control
object.

If id is a recording identifier, the OITF SHALL change the content item to be played to the
recorded item, or item being recorded, for which the Recording.id property (as defined
in section 7.10.5.1) corresponds to the given recording identifier. The type attribute of the
A/V control object SHOULD change to the MIME type of the format in which the content
was recorded. The data attribute SHALL change to the same value as the recording
identifier.

If id is a COD asset identifier, the OITF SHALL change the content item to be played to
the CODAsset, for which the CODAsset.uid property (as defined in section 7.5.6.1)
corresponds to the given COD asset identifier. The type attribute of the A/V control object
SHOULD change to the MIME type of the COD Asset. The data attribute SHALL change
to the same value as to COD asset identifier.

If the content item represented by id can be accepted by the A/V control object for
playback, the method returns true. The method returns false if the item cannot be
accepted for playback.

Arguments id The ID of the item to be played.

7.14.8 Extensions to A/V object for UI feedback of buffering A/V content
The following additional properties and methods SHALL be supported on audio and video objects as defined in section
5.7.1 of [CEA2014A].

7.14.8.1 Properties

function onReadyToPlay

The function that gets called when enough (as determined by the OITF) of the media after the current
play position has been buffered to start/continue playback.

This event SHALL be generated whenever there is a state transition between state 4 (‘buffering”)
and state 1 (‘playing”). The event SHALL also be generated at the moment that enough data has
been buffered to start playback, whilst in state 2 (‘paused’).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 192 (289)

Boolean readyToPlay

Property that can be used to inspect whether or not enough (as determined by the OITF) of the media
after the current play position has been buffered to start playback.

Returns true if enough data has been buffered. Returns false if not enough data has been buffered.

7.14.8.2 Methods

Integer getAvailablePlayTime(Boolean fromPlayPosition)

Description Returns how much content is available for playback.

If argument fromPlayPosition has value true, this method returns an estimate of
how much data in milliseconds is available in the buffer for play back after the current
play position.

If argument fromPlayPosition has value false, this method returns an estimate of
the total buffer length in milliseconds (i.e. this includes all data available in the buffer
before and after the current play position).

Arguments fromPlayPosition Indicates whether the available play time should be
calculated from the current play position onwards, or
from the start of the buffer.

Boolean setBufferingStrategy(String name)

Description Request to change the buffering strategy. Valid values for argument “name” include:

“sustained_playback”: this is the default strategy, whereby the incoming video
stream should be rendered with as little hickups or lost frames as possible. This means
that the buffering threshold for triggering an onReadyToPlay event is chosen to be
sufficiently large to deal with variations in network throughput.

“low_latency”: this is a strategy whereby the incoming video stream should be
rendered with an as low as possible latency between receiving the content and the
actual playback of the content. This means that buffering threshold for triggering an
onReadyToPlay event needs to be made sufficiently small in order to playback the
content as soon as possible after it has been received.

The values are case insensitive. The default strategy if the method is not called is
“sustained_playback”.

This method can be called during any play state, including play state 1 (‘playing’).

This method returns true if the buffering strategy has been successfully changed to
the preferred buffering strategy. The method returns false if the buffering strategy
has not been successfully changed.

If the OITF does not distinguish between the two modes, the method returns false.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 193 (289)

7.14.8.3 DOM 2 events for A/V object
For the intrinsic event “onReadyToPlay”, a corresponding DOM level 2 event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onReadyToPlay ReadyToPlay Bubbles: No

Cancelable: No

Context Info: None

Note: these DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the CEA-2014 A/V Control object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.9 DOM 2 events for A/V object
To make the A/V Control object as defined in CEA-2014-A in line with the other scripting objects in section 7 of this
specification, an OITF SHALL generate DOM 2 events for the intrinsic events onfocus, onblur,
onPlayStateChange, and onFullScreenChange, in the manner as specified below.

Intrinsic event Corresponding DOM 2 event DOM 2 Event
properties

onfocus focus (as specified in section 1.6.5 of [DOM 2
Events])

Bubbles: No

Cancelable: No

Context Info: None

onblur blur (as specified in section 1.6.5 of [DOM 2
Events])

Bubbles: No

Cancelable: No

Context Info: None

onPlayStateChange PlayStateChange Bubbles: No

Cancelable: No

Context Info: None

onFullScreenChange FullScreenChange Bubbles: No

Cancelable: No

Context Info: None

Note: these DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the CEA-2014 A/V Control object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 194 (289)

When handling PlayStateChange events, since the property "playState" of the A/V Control object always returns
the current play state, there are a number of considerations:

 When accessing the playState property inside a PlayStateChange event handler, its value will be the
current state of the related media object that may be different from the state transition that caused the handler to
be called.

 The playState property may change value during the execution of the PlayStateChange event handler.

 For an A/V control object there is no way to detect which state transition caused the event handler to be
executed.

7.14.10 Playback of memory audio
This section describes how an AV Control object can be used for the playback of audio from memory.

7.14.10.1 Usage of CE-HTML tags
The AV Control object SHALL be used to play audio clips from memory. The value of the AV Control object’s type
attribute SHALL be set to one of the values defined in section 8.2.1 of [MEDIA]. The <object> element representing
the AV Control object MAY contain <param> elements to set the value of parameters affecting the playback of the clip,
For audio from memory, valid parameters are:

 cache – a case-sensitive value of “true” indicates that the audio clip should be played from memory. This
parameter SHALL be included for all clips to be played from memory. For formats which can not be played
from memory, or for values of the parameter other than “true”, this parameter SHALL have no effect. The
default value of this parameter SHALL be “false”.

loop – indicates the number of times the audio clip SHALL be played when play() is called. The value SHALL be
positive integers or the case sensitive string “infinite”, which SHALL play the audio clip continuously until stop()
is called or the data property is set to null. The default value of this parameter SHALL be “1”.

Simultaneous playback of multiple audio clips from memory, or simultaneous playback of audio clips from memory and
streaming audio or video presentation SHALL follow the behaviour described in section 4.4.5.

7.14.10.2 Usage of DOM interface
For AV Control objects used to play audio from memory, the following properties and methods SHALL be supported:

 The properties data, playState, error and onPlayStateChange, as defined in Req. 5.7.1.f of
[CEA2014A].

 The methods play() and stop(), as defined in Req. 5.7.1.f of [CEA2014A].

When the play() method is called, if a <param> element as described above is present where the cache parameter is
set to the value “true”, the OITF SHALL:

 attempt to pre-load the audio clip specified by the value of its data property and play the audio clip from
memory. If the terminal cannot pre-load the audio clip due to insufficient memory, the terminal SHALL play
the clip as streaming audio.

 attempt to retain the audio clip in its cache once playback has finished, until the AV Control object’s data
property is modified or the AV Control object is destroyed.

If the AV Control object’s data property refers to a file in a format other than those listed in section 8.2.1 of [MEDIA],
the AV Control object SHALL NOT attempt to play the file from memory.

The <param> element as defined in section 7.14.10.2 of this document SHALL be made accessible through a DOM
HTMLParamElement object.

7.14.10.3 Example usage (informative)
The following HTML document shows an example of a script to start the playback of memory audio:

<head>
:
<script type=”text/javascript”>
 function startBGM() {
 document.getElementById(“aid1”).play(1);
 }
 :
</script>
</head>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 195 (289)

<body>
<object type="audio/mp4" id="aid1" data="http://www.avsource.com/audio/bgm.aac">
 <param name=”cache” value=”true” />
 <param name=”loop” value=”infinite”/>
</object>
:
<div id=”btn1” onclick=”startBGM()”></div>
 :
</body>

The following HTML document shows an example of a script to stop the playback of memory audio:
<head>
 :
<script type=”text/javascript”>
 function stopBGM() {
 document.getElementById(“aid1”).stop();
 }
 :
</script>
</head>
<body>
<object type="audio/mp4" id="aid1" data="http://www.avsource.com/audio/bgm.aac">
<param name=”cache” value=”true” />
<param name=”loop” value=”infinite”/>
</object>
 :
<div id=”btn2” onclick=”stopBGM()”></div>
 :
</body>

7.15 Miscellaneous APIs
7.15.1 The application/oipfMDTF embedded object
If an OITF has indicated support for the multicast delivery terminating function(MDTF) (i.e., <mdtf>true</mdtf>)
as defined in section 9.3.15 in its capability description, the OITF SHALL support MDTF through the use of the
following non-visual object:

<object type=”application/oipfMDTF”/>

The MDTF API provides the necessary javascript methods to indicate to the MDTF what FLUTE multicast channel it
should join, and what tags it should listen for on those channels.

7.15.1.1 Properties

function onFLUTEListenerResult(String multicastAddress, Integer resultMsg)

This function is called with return result from the methods addFLUTEListener and
removeFLUTEListener.

The specified script function is called with 2 arguments – multicastAddress and resultMsg.

• String multicastAddress – The multicast address associated with the callback.

• Integer resultMsg – result message. Valid values include:

Result
message

Description Semantics

0 Successful The action performed by the underlying
functionality was successful.

1 Unknown error The action performed by the underlying
functionality failed because an unspecified error
occurred.

2 Invalid multicast
address

The multicast address is not valid, e.g. bad syntax
or out of range.

3 Multicast The multicast address does not exist in the listener

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 196 (289)

address does
not exist

table.

4 No resources There was not enough resources in the OITF to
join the multicast address (only valid for
addFLUTEListener).

7.15.1.2 Methods

void addFLUTEListener(String multicastAddress)

Description This method adds a FLUTE channel listener in the OITF.

The result from this method is sent to the callback method onFLUTEListenerResult.

Arguments multicastAddress The multicast address that the OITF should join in order to
listen.

void addFLUTEListenerTags(String multicastAddress, String tags,

 String downloadCallBack)

Description This method adds tags that the FLUTE listener should listen for.

The result from this method is sent to the callback method onFLUTEListenerResult.

multicastAddress The multicast address that the OITF should join in order to
listen.

tags A comma separated list of tags that the OITF should listen for
on the FLUTE channel.

Arguments

downloadCallback Optional. This callback function is called when an object has
been downloaded. The arguments to this function are the
Content Location URI of the downloaded object and the
Content-Type.

StringCollection getFLUTEListeners()

Description Returns a collection of multicast addresses for the FLUTE channels that the OITF
listens to.

String getTags(String multicastAddress)

Description Returns a comma-separated list of the tags associated with a particular multicast
address.

void removeFLUTEListener(String multicastAddress)

Description Removes the associated listener.

The result from this method is sent to the callback method onFLUTEListenerResult.

Arguments multicastAddress The multicast address that the OITF should leave.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 197 (289)

7.15.1.3 Events
For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onFLUTEListenerResult FLUTEListenerResult Bubbles: No

Cancelable: No

Context Info: multicastAddress,
resultMsg

NOTE: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving a FLUTEListenerResult event during the bubbling or the capturing phase.
Applications that use DOM 2 event handlers SHALL call the addEventListener() method on the
application/oipfMDTF object. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.15.2 The application/oipfStatusView embedded object
7.15.2.1 Overview of download status
The following embedded objects allow a visualization of the native download manager to be included as part of the UI
coming from a (third party) server, without the need for any security model, and without compromising security and
privacy.

An OITF SHALL support the application/oipfStatusView embedded object. This is a visual object that can be
included in a HTML document, and is subject to the following CSS-properties: width, height, position, float, top, left,
right, bottom, vertical-align, padding, and padding-* properties, margin, and margin-* properties, border, and border-*
properties, visibility, and display. This embedded object SHALL provide an overall consistent graphical view of the
status of the current downloads, the content that has been downloaded, and/or the content that has been recorded, as
denoted by the states:

 “list_of_recent_downloads”: shows the progress of the most recently started downloads, with the amount of
items shown as specified by <param> element with the name “nritems”.

 “list_of_downloaded_content”: shows the list of items that have been successfully downloaded, with the amount
of items shown as specified by <param> element with the name “nritems”.

The object SHALL support a <param> element with the name “state”, which indicates the state that SHALL be
visualized inside the object. An OITF that has indicated support for downloading content in its capability description (i.e.
<download>true</download>) SHALL at least support the monitor states “list_of_recent_downloads” and
“list_of_downloaded_content”. An OITF MAY support the visualization of additional states. An OITF SHALL silently
ignore a request to visualize a state that it does not support; if this results in no state information being visualized at all
(because the each <param> element with name state referred to a non-supported state), the application/oipfStatusView
object SHALL not be visualized and the object will have CSS width and height values of 0.

The object SHALL support a <param> element with the name “nritems”, which indicates the number of items that should
be shown for the given state.

The object SHALL also support the inclusion of style hints through <param> elements. At least the “background-color”
and “font-size” style hints SHALL be supported using the syntax defined by CSS 2.1. An OITF MAY support additional
style hints in addition to “background-color” and “font-size”. Additional style hints SHALL also follow the CSS 2.1
syntax. An OITF SHALL silently ignore any style hints that it does not support.

Next to these parameters, the object SHALL support methods “getMinimumItemWidth” and
“getMinimumItemHeight” as defined in section 7.15.2.1.1.

Example usage:
<object id=”d1” type=”application/oipfStatusView” width=”200” height=”100”>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 198 (289)

 <param name=”state” value=”list_of_recent_downloads”/>
 <param name=”nritems” value=”2”/>
 <param name=”background-color” value=”black”/>
 <param name=“font-size” value=“16px”/>
</object>

NOTE: this object is intended to allow services to link in to the privileged functionality of accessing privacy sensitive
download information, without the need for certificates and privileged access requests. In certain managed network
deployments this may not be sufficient. The application/oipfDownloadManager API described in section 7.4.3
provides more extensive APIs which provide JavaScript control for a service platform provider over such highly
privileged functionality.

7.15.2.1.1 Methods

Integer getMinimumItemWidth(String state)

Description Returns the minimum width needed for rendering the name, status and other data of
the downloaded items for the given state (e.g. “list_of_recent_downloads”).

Arguments state The state for which the visualization is requested. This is one of the strings
that are defined for <param> element with the name “state” (e.g.
“list_of_recent_downloads”).

Integer getMinimumItemHeight(String state)

Description Returns the minimum height needed for rendering the name, status and other data of
the downloaded items for the given state (e.g. “list_of_recent_downloads”).

Arguments state The state for which the visualization is requested. This is one of the strings
that are defined for <param> element with the name “state” (e.g.
“list_of_recent_downloads”).

7.15.2.2 Overview of recordings
An OITF that has indicated support for control of its recording functionality by a server (i.e.,
<record>true</record>) SHALL support the application/oipfStatusView embedded object defined in
section 7.15.2.1, for which it SHALL at least support the following additional monitor state:

 “list_of_recorded_content”: shows the list of items that have been recorded or that are currently being recorded,
with the amount of items shown as specified by <param> element with the name “nritems”.

NOTE: this object is intended to allow services to link in to highly privileged functionality, without the need for
certificates and privileged access requests. In certain managed network deployments this may not be sufficient.
Therefore, section 7.10.4 defines more extensive APIs which provide JavaScript control for a service platform provider
over such highly privileged functionality.

7.15.3 The application/oipfCapabilities embedded object
The OITF SHALL support following non-visual embedded object with the mime type
“application/oipfCapabilities”.

7.15.3.1 Properties

readonly Document xmlCapabilities

Returns the OITF’s capability description as an XML Document object using the syntax as defined in
Annex F without using any namespace definitions.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 199 (289)

readonly Number extraSDVideoDecodes

This property holds the number of possible additional decodes for SD video. Depending on the current
usage of system resources this value may vary. The value of this property is likely to change if an HD
video is started.

Adding an A/V Control object or video/broadcast object may still fail, even if
extraSDVideoDecodes is larger than 0. For A/V Control objects, in case of failure the play state for
the A/V Control object shall be set to 6 (‘error’) with a detailed error code of 3 (‘insufficient
resources’). For video/broadcast objects, in case of failure the play state of the
video/broadcast object shall be set to 0 (‘unrealized’) with a detailed error code of 11
(‘insufficient resources’).

readonly Number extraHDVideoDecodes

This property holds the number of possible additional decodes for HD video. Depending on the current
usage of system resources this value may vary. The value of this property is likely to change if an SD
video is started.

Adding an A/V Control object or video/broadcast object may still fail, even if
extraHDVideoDecodes is larger than 0. For A/V Control objects, in case of failure the play state for
the A/V Control object shall be set to 6 (‘error’) with a detailed error code of 3 (‘insufficient
resources’). For video/broadcast objects, in case of failure the play state of the
video/broadcast object shall be set to 0 (‘unrealized’) with a detailed error code of 11
(‘insufficient resources’).

7.15.3.2 Methods

Boolean hasCapability(String profileName)

Description Check if the OITF supports the passed capability.

Returns true if the OITF supports the passed capability, false otherwise.

Arguments profileName An OIPF base UI profile string or a UI Profile name fragment string as
defined in section 9.2.

Examples of valid profileName: “OITF_HD_UIPROF” or “+PVR”.

7.15.4 The Navigator class
The Navigator object represents the identity of the OITF. This is intended to be equivalent to the Navigator interface
as defined in section 6.5 (“System State and Capabilities”) of [HTML5].

7.15.4.1 Properties

readonly String appName

Returns the name of the browser. If supported, this corresponds to the <appName> element in the user-
agent header as defined in section 8.1.1, otherwise, it SHALL be an empty string.

readonly String appVersion

Returns the version of the browser. If supported, this corresponds to the <appVersion> element in the
user-agent header as defined in section 8.1.1, otherwise, it SHALL be an empty string.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 200 (289)

7.15.5 Debug print API
The following method is available on the global (Window) object.

void debug(DOMString arg)

Description Let the application developer print debug information on the debug output (for
example, a console, a serial link or a file). The means to access this debug output is
outside the scope of this specification and implementation-dependent.

A line feed character shall not be inserted automatically at the end of the string by the
implementation.

Example:
debug("[APP] value = " + value + "\n");

Arguments arg String to print on the debug output.

7.16 Shared Utility classes and features
7.16.1 The StringCollection class
A StringCollection object represents a read-only collection of strings. Items in the collection can be accessed using
array notation. Next to the properties and methods defined below a StringCollection object SHALL support the
array notation to access the strings in this collection.

7.16.1.1 Properties

readonly Integer length

The number of items in the collection

7.16.1.2 Methods

String item(Integer index)

Description Return the item at position index in the collection, or undefined if no item is present at that
position.

The position can also be specified using array bracket notation instead of calling this
method directly.

Arguments index The index of the item that SHALL be returned

7.16.2 The Programme class
The Programme class represents an entry in a programme schedule.

Note: as described in the record(Programme programme) method of the
application/oipfRecordingScheduler object, only the programmeID property of the programme object is
used to determine the programme or series that will be recorded. The other properties are solely used for annotation of
the (scheduled) recording with programme metadata. The use of these metadata properties is optional. If such programme
metadata is provided, it is retained in the ScheduledRecording object that is returned if the recording of the
programme was scheduled successfully.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 201 (289)

7.16.2.1 Constants

Name Value Use

ID_TVA_CRID 0 Used in the programmeIDType property to indicate that the programme is
identified by its TV-Anytime CRID (Content Reference Identifier).

ID_DVB_EVENT 1 Used in the programmeIDType property to indicate that the programme is
identified by a DVB URL referencing a DVB-SI event as enabled by section
4.1.3 of [META]. OPTIONAL.

7.16.2.2 Properties

String name

The short name of the programme, e.g. 'Star Trek: DS9'.

String longName

The long name of the programme, e.g. 'Star Trek: Deep Space Nine'. If the long name is not available,
this property will be undefined.

String description

The description of the programme, e.g. an episode synopsis. If no description is available, this property
will be undefined.

String longDescription

The long description of the programme. If no description is available, this property will be undefined.

Integer startTime

The start time of the programme, measured in seconds since midnight (GMT) on 1/1/1970.

Integer duration

The duration of the programme (in seconds).

String channelID

The identifier of the channel from which the broadcasted content is to be recorded. Specifies either a
ccid or ipBroadcastID (as defined by the Channel object in section 7.13.11)

Integer episode

The episode number for the programme if it is part of a series. This property is undefined when the

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 202 (289)

programme is not part of a series or the information is not available.

Integer totalEpisodes

If the programme is part of a series, the total number of episodes in the series. This property is
undefined when the programme is not part of a series or the information is not available.

String programmeID

The unique identifier of the programme or series, e.g., a TV-Anytime CRID (Content Reference
Identifier).

Integer programmeIDType

The type of identification used to reference the programme, as indicated by one of the ID_* constants
defined above.

readonly ParentalRatingCollection parentalRatings

A collection of parental rating values for the programme for zero or more parental rating schemes
supported by the OITF. For instances of the Programme class created by the createProgramme()
method defined in section 7.10.1.1, the initial value of this property (upon creation of the Programme
object) is an instance of the ParentalRatingCollection object (as defined in section 7.9.5) with
length 0. Parental rating values can be added to this empty readonly parental rating collection by using
the addParentalRating() method of the ParentalRatingCollection object. The
ParentalRatingCollection is defined in section 7.9.5. The related ParentalRating and
ParentalRatingScheme objects are defined in sections 7.9.4 and 7.9.2 respectively.

For instances of the Programme class returned through the metadata APIs defined in section 7.12 or
through the programmes property of the video/broadcast object defined in section 7.13.3, the initial
value of this property SHALL include the parental rating value(s) carried in the metadata or DVB-SI
entry describing the programme, if this information is included.

Note that if the service provider specifies a certain parental rating (e.g. PG-13) through this property
and the actual parental rating extracted from the stream says that the content is rated PG-16, then the
conflict resolution is implementation dependent.

7.16.2.3 Metadata extensions to Programme
The OITF SHALL extend the Programme class defined in section 7.16.2 with the properties and methods described
below.

This subsection SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a “type”
attribute with values “bcg”, “eit-pf” or “dvb-si” as defined in section 9.3.7 in their capability profile.

7.16.2.3.1 Properties

readonly Channel channel

Reference to the broadcast channel where the programme is available.

The value of this field is derived from the serviceIDref attribute of the Schedule element that refers
to this programme.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 203 (289)

readonly Boolean blocked

Flag indicating whether the programme is blocked due to parental control settings or conditional access
restrictions.

The blocked and locked properties work together to provide a tri-state flag describing the status of a
programme. This can best be described by the following table:

Description blocked locked

No parental control applies. false false

Item is above the parental rating threshold (or manually blocked); no PIN has
been entered to view it and so the item cannot currently be viewed.

true true

Item is above the parental rating threshold (or manually blocked); the PIN has
been entered and so the item can be viewed.

true false

Invalid combination – OITFs SHALL NOT support this combination false true

readonly Integer showType

Flag indicating the type of show (live, first run, rerun, etc,).

The value of this property is determined by the child elements of the programme’s BroadcastEvent or
ScheduleEvent element from the Program Location Table. Values are determined as follows:

Value Description

1 The programme is live; indicated by the presence of a Live element
with a value attribute set to true.

2 The programme is a first-run show; indicated by the presence of a
FirstShowing element with a value attribute set to true.

3 The programme is a rerun; indicated by the presence of a Repeat
element with a value attribute set to true.

If none of the above conditions are met, the default value of this field SHALL be 2.

readonly Boolean subtitles

Flag indicating whether subtitles or closed-caption information is available.

This flag SHALL be true if one or more BCG CaptionLanguage elements are present in this
programme’s description, false otherwise.

readonly Boolean isHD

Flag indicating whether the programme has high-definition video.

This flag SHALL be true if a VerticalSize element is present in the programme’s description and
has a value greater than 576, false otherwise.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 204 (289)

readonly Integer audioType

Bitfield indicating the type of audio that is available for the programme.

The value of this field is determined by the NumOfChannels elements in a programme’s A/V attributes.
Values are determined as follows:

Value Description

1 A mono audio stream is available (at least one AvAttributes.AudioAttributes element
is present which has a child NumOfChannels element whose value is 1).

2 A stereo audio stream is available (at least one AvAttributes.AudioAttributes element
is present which has a child NumOfChannels element whose value is 2).

4 A multi-channel audio stream is available (at least one AvAttributes.AudioAttributes
element is present which has a child NumOfChannels element whose value is greater than
2).

For programmes with multiple audio streams, these values may be ORed together.

readonly Boolean isMultilingual

Flag indicating whether more than one audio language is available for the programme.

This flag SHALL be true if more than one BCG Language element is present in the programme’s
description, false otherwise.

readonly StringCollection genre

A collection of genres that describe this programme.

The value of this field is the concatenation of the values of any Name elements that are children of
Genre elements in the programme’s description.

readonly Boolean hasRecording

Flag indicating whether the Programme has a recording associated with it (either scheduled, in
progress, or completed).

readonly StringCollection audioLanguages

Supported audio languages, indicated by their ISO.639.2 language codes as defined in [ISO 639.2].

readonly StringCollection subtitleLanguages

Supported subtitle languages, indicated by their ISO.639.2 language codes as defined in [ISO 639.2].

readonly Boolean locked

Flag indicating whether the current state of the parental control system prevents the programme from
being viewed (e.g. a correct parental control PIN has not been entered to allow the programme to be

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 205 (289)

viewed).

7.16.2.3.2 Methods

String getField(String fieldId)

Description Get the value of the field referred to by fieldId that is contained in the metadata for
this programme. If the field does not exist, this method SHALL return undefined.

Arguments fieldId The name of the field whose value SHALL be retrieved.

7.16.2.4 DVB-SI extensions to Programme
The following method SHALL be added to the Programme object, if the OITF has indicated support for accessing
DVB-SI information, by giving the value “true” to element <clientMetadata> and the value “dvb-si” or “eit-
pf” to the “type” attribute of that element as defined in section 9.3.7 in their capability profile.

StringCollection getSIDescriptors(Integer descriptorTag,

 Integer descriptorTagExtension)

Description Get the contents of the descriptor specified by descriptorTag from the DVB SI EIT
programme's descriptor loop. If more than one descriptor with the specified tag is
available for the given programme, the contents of all matching descriptors SHALL be
returned in the order the descriptors are found in the stream.

The descriptor content bytes SHALL be encoded in a string whose characters shall be
restricted to the ISO Latin-1 character set. Each character in the string represents a
byte of a DVB-SI descriptor, such that a byte at position "i" in the descriptor is equal
the Latin-1 character code of the character at position "i" in the string.

Described in the syntax of JavaScript: let desc[] be the byte array of a descriptor, in
which desc[0] is the descriptor_tag, then, the returned string (retval in the example
below) is its equivalent string, if :

 desc.length==retval.length and

 for each integer i : 0<=i<desc.length holds

 desc[i] == retval.charCodeAt(i).

If the descriptor specified by descriptorTag and (optionally)
descriptorTagExtension does not exist, or if the metadata for this programme was
retrieved from a source other than DVB-SI, this method SHALL return null.

If metadata for this programme has not yet been retrieved, this method SHALL return
undefined. If the OITF supports the application/oipfSearchManager object as
defined in section 7.12.1, the OITF SHALL notify applications of the availability of
additional metadata via MetadataSearch events targeted at the
application/oipfSearchManager object used to retrieve the programme
metadata.

Arguments descriptorTag The descriptor tag as specified by [EN300468].

 descriptorTagExtension An optional argument giving the descriptor tag
extension as specified by [EN300468].

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 206 (289)

7.16.2.5 Recording extensions to Programme
The OITF SHALL support the following extensions to the Programme class.

Clients supporting the recording management APIs defined in this section SHALL indicate this by adding the attribute
"manageRecordings" to the <recording> element with a value unequal to ‘none’ in the client capability
description as defined in section 9.3.3.

The functionality as described in this section is subject to the security model of section 10.

readonly ScheduledRecording recording

If available, this property represents the recording associated with this programme (either scheduled, in-
progress or completed). Has value undefined if this programme has no scheduled recording
associated with it.

7.16.3 The ProgrammeCollection class
The ProgrammeCollection class represents a collection of Programme objects as defined in section 7.16.2, sorted
in time order. Next to the properties and methods defined below a ProgrammeCollection Object SHALL support the
array notation to access the Programme objects in this collection

7.16.3.1 Properties

readonly Integer length

The number of items in the collection.

7.16.3.2 Methods

Programme item(Integer index)

Description Return the item at position index in the collection, or undefined if no item is present
at that position.

Arguments index The index into the collection.

7.16.4 The DiscInfo class
The DiscInfo class provides details of the storage usage and capacity in the OITF.

7.16.4.1 Properties

readonly Integer free

The space (in megabytes) available on the storage device for recordings.

readonly Integer total

The total capacity (in megabytes) of the storage device. Depending upon the system, free MAY be
less than total even with no recordings as some of the disc space MAY be used for management
purposes.

readonly Integer reserved

The space (in megabytes) reserved for scheduled or ongoing recordings and downloads.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 207 (289)

7.16.5 Extensions for playback of selected media components
This section defines APIs for the selection of specific A/V components for playback.

NOTE: The term component may correspond to MPEG_2 components, but is not restricted to that.

7.16.5.1 Media playback extensions
7.16.5.1.1 Constants
The following constants are defined as properties on any objects implementing this section:

Name Value Use

COMPONENT_TYPE_VIDEO 0 Represents a video component. This constant is used for all
video components regardless of encoding.

COMPONENT_TYPE_AUDIO 1 Represents an audio component. This constant is used for all
audio components regardless of encoding.

COMPONENT_TYPE_SUBTITLE 2 Represents a subtitle component. This constant is used for all
subtitle components regardless of subtitle format. NOTE: A
subtitle component may also be related to closed captioning as
part of a video stream.

7.16.5.1.2 Properties

function onSelectedComponentChanged(Integer componentType)

This function is called when there is a change in the set of components being presented. This may
occur if one of the currently selected components is no longer available and an alternative is chosen
based on user preferences, or when presentation has changed due to a different component or set of
components being selected.

OITFs MAY optimise event dispatch by dispatching a single event in response to several calls to
selectComponent() or unselectComponent() made in rapid succession.

The specified function is called with one argument:

• Integer componentType - The type of component whose presentation has changed, as
represented by one of the constant values listed in section 7.16.5.1.1. If more than one
component type has changed, this argument will take the value undefined.

7.16.5.1.3 Methods

AVComponentCollection getComponents(Integer componentType)

Description If the set of components is known, returns a collection of AVComponent values
representing the components of the specified type in the current stream. If
componentType is set to null or undefined then all components are returned if they are
known.

For a video/broadcast object, the set of components SHALL be known if the
video/broadcast object is in the presenting state and MAY be known if the object is in
other states. For an AV Control object, the set of components SHALL be known if the
AV Control object is in the playing state and MAY be known if the object is in other
states.

NOTE: In the case of broadcast MPEG-2 transport streams, this method returns in
formation from the PMT but the PMT is not always accurate. Components may be

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 208 (289)

signalled in the PMT which are not actually present all the time. Components may be
present but carrying information inconsistent with the PMT, for example a secondary
audio stream may be signalled but carrying a copy of the primary audio stream when
content for the secondary audio has not been produced. Applications can use the
getSIDescriptors() method defined in section 7.16.2.4 to obtain descriptors from
the EIT where these subtleties are normally signalled. Exactly how they are “normally
signalled” is generally market specific.

One or more of the components returned MAY be passed back to one of the other
methods unchanged (e.g. selectComponent()).

If property preferredAudioLanguage in the Configuration object (refer to section
7.3.1.1) is set then a component is by default selected and is considered as an active
component.

If property preferredSubtitleLanguage in the Configuration object (refer to section
7.3.1.1) is set and property subtitleEnabled in AVOutput class (refer to section
7.3.5.1) is enabled then a component is by default selected and is considered as an
active component.

Argument componentType The type of component to be returned , as represented by one of
the constant values listed in section 7.16.5.1.1.

AVComponentCollection getCurrentActiveComponents(Integer componentType)

Description If the set of components is known, returns a collection of AVComponent values
representing the currently active components of the specified type that are being
rendered. Otherwise returns undefined.

For a video/broadcast object, the set of components SHALL be known if the
video/broadcast object is in the presenting state and MAY be known if the object is in
other states. For an AV Control object, the set of components SHALL be known if the
AV Control object is in the playing state and MAY be known if the object is in other
states.

One or more of the components returned MAY be passed back to one of the other
methods unchanged (e.g. selectComponent()).

Argument componentType The type of currently active component to be returned.
represented by one of the constant values listed in section
7.16.5.1.1.

void selectComponent(AVComponent component)

Description Select the component that will be subsequently rendered when A/V playback starts or
select the component for rendering if A/V playback has already started.

If playback has started, this SHALL replace any other components of the same type
that are currently playing.

If property preferredAudioLanguage in the Configuration object (refer to section
7.3.1.1) is set then a component is by default selected and it is not necessary to
perform selectComponent().

If property preferredSubtitleLanguage in the Configuration object (refer to section
7.3.1.1) is set and property subtitleEnabled in AVOutput class (refer to section
7.3.5.1) is enabled then a component is by default selected and it is not necessary to
perform selectComponent().

Argument component A component object available in the stream currently being
played.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 209 (289)

void unselectComponent(AVComponent component)

Description Stop rendering of the specified component of the stream.

If property preferredAudioLanguage in the Configuration object (see section 7.3.1.1)
is set then unselecting a specific component returns to the default preferred audio
language.

If property preferredSubtitleLanguage in the Configuration object (see section
7.3.1.1) is set and property subtitleEnabled in AVOutput class (see section 7.3.5.1) is
enabled then unselecting a specific component returns to the default preferred subtitle
language. In order to stop rendering subtitles completely it is necessary to disable
subtitles with property subtitleEnabled in AVOutput class.

Argument component The component to be stopped.

void selectComponent(Integer componentType)

Description If A/V playback has already started, start rendering the default component of the
specified type in the current stream. This SHALL replace any other components of the
same type that are currently playing.

If A/V playback has not started, the default component of the specified type will be
subsequently rendered once playback does start.

Argument componentType The type of component for which the default component should
be rendered.

void unselectComponent(Integer componentType)

Description If A/V playback has already started, stop rendering of the specified type of component.
If A/V playback has not started, no components of the specified type will be
subsequently rendered once playback does start.

Argument componentType The type of component to be stopped.

7.16.5.1.4 Events
For the intrinsic event “onSelectedComponentChange”, corresponding DOM level 2 events SHALL be generated, in
the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onSelectedComponentChange SelectedComponentChange Bubbles: No

Cancelable: No

Context Info: componentType

7.16.5.2 The AVComponent class
AVComponent represents a component within a complete media stream - a single stream of video, audio or data that can
be played or manipulated. This is not necessary for basic playback, record or EPG services. However, it provides a
mechanism to get at extended streams for enhanced services.

For forward compatibility the DAE application SHALL check the value of the type property to ensure that it is
accessing an AVComponent object of the correct type.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 210 (289)

7.16.5.2.1 Properties

readonly Integer componentTag

The component tag identifies a component. The component tag identifier corresponds to the
component_tag in the component descriptor in the ES loop of the stream in the PMT [EN300468], or
undefined if the component is not carried in an MPEG-2 TS .

readonly Integer pid

The MPEG Program ID (PID) of the component in the MPEG2-TS in which it is carried, or undefined if
the component is not carried in an MPEG-2 TS.

readonly Integer type

Type of the component stream. Valid values for this field are given by the constants listed in section
7.16.5.1.1.

readonly String encoding

The encoding of the stream. The value of video format or audio format defined in section 3 of [MEDIA]
SHALL be used.

readonly Boolean encrypted

Flag indicating whether the component is encrypted or not.

7.16.5.3 The AVVideoComponent class
The AVVideoComponent class implements the AVComponent interface.

7.16.5.3.1 Properties

readonly Number aspectRatio

Indicates the aspect ratio of the video or undefined if the aspect ratio is not known. Values SHALL be
equal to width divided by height, rounded to a float value with two decimals, e.g. 1.78 to indicate 16:9
and 1.33 to indicate 4:3.

7.16.5.4 The AVAudioComponent class
The AVAudioComponent class implements the AVComponent interface.

7.16.5.4.1 Properties

readonly String language

An ISO 639.2 language code representing the language of the stream, as defined in [ISO 639.2].

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 211 (289)

readonly Boolean audioDescription

Has value true if the stream contains an audio description intended for people with a visual impairment,
false otherwise.

readonly Integer audioChannels

Indicates the number of channels present in this stream (e.g. 2 for stereo, 5 for 5.1, 7 for 7.1).

7.16.5.5 The AVSubtitleComponent class
The AVSubtitleComponent class implements the AVComponent interface.

7.16.5.5.1 Properties

readonly String language

An ISO 639.2 language code representing the language of the stream, as defined in [ISO 639.2].

readonly Boolean hearingImpaired

Has value true if the stream is intended for the hearing-impaired (e.g. contains a written description of
the sound effects), false otherwise.

7.16.5.6 The AVComponentCollection class
An AVComponentCollection object represents a read-only collection of AVComponent objects. Next to the
properties and methods defined below an AVComponentCollection object SHALL support the array notation to
access the AV components in this collection.

7.16.5.6.1 Properties

readonly Integer length

The number of items in the collection.

7.16.5.6.2 Methods

AVComponent item(Integer index)

Description Return the item at position index in the collection.

Arguments index The index of the item to be returned

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 212 (289)

8 System integration aspects
8.1 HTTP Protocol
In addition to what is required by section 5.3 of [CEA2014A] an OITF SHALL apply the following requirements.

8.1.1 HTTP User-Agent header
All DAE application’s HTTP requests SHALL include a User-Agent header using the syntax described in this section.
Embedded objects HTTP requests MAY include a User-Agent header using this syntax.

The User-Agent header SHALL include:
OIPF-<oipfProfile>/<releaseVersion>.<majorVersion>.<minorVersion> (<capabilities>;
[<vendorName>]; [<modelName>]; [<softwareVersion>]; [<hardwareVersion>];
[<familyName>]; <reserved>) [<appName>[/<appVersion>]]

Where:

 the <capabilities> field consists of a description of the OITFs capabilities. Valid values include:

• a base profile string concatenated with one or more optional Profile name fragment strings, such as the
base UI profile strings and UI profile name fragment strings as defined in section 9.2 “Default UI
profiles”.

• the <oipfProfile> field identifies the profile implemented by the OITF as defined in the specification of
the oipfProfile property of the LocalSystem class (in section 7.3.3 “The LocalSystem class”).

• the <releaseVersion>, <majorVersion> and <minorVersion> fields identify the version of the
specification implemented by the OITF as defined in section 7.3.3 “The LocalSystem class” with
properties of the same name.

 the <vendorName>, <modelName>,<familyName>, <softwareVersion> and <hardwareVersion>
fields are the same as the one defined in section 7.11.1 “The application/oipfRemoteManagement embedded
object” and are optional.

 the <reserved> field is reserved for future extensions

 the <appName> and <appVersion> fields are defined in the window.navigator object and are optional.

This User-Agent header MAY be extended with other implementation-specific information.

Valid examples of such syntax are:
User-Agent: OIPF-EMP/1.1.0 (OITF_HD_UIPROF+PVR+DL; Sonic; TV44; 1.32.455; 2.002;
com.acme.2012;) Bee/3.5
User-Agent: OIPF-OIP/1.1.0 (OITF_HD_UIPROF+PVR+DL;;;;;;)

8.2 Mapping from APIs to Protocols
This section describes mapping of DAE APIs to the specific protocol entities as defined in the protocol specification
[PROT].

Section 8.2.1 describes mappings on the UNI that apply to both the managed and unmanaged cases.

Section 8.2.2 describes mappings on the HNI-IGI interface, and only apply in the managed case.

Section 8.2.3 describes mappings on the UNI that only apply to the unmanaged case.

8.2.1 Network (Common to Managed and Unmanaged Services)
This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification for
APIs between the OITF and the Network over reference points UNIT-17.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 213 (289)

8.2.1.1 Download CoD

Methods Procedures

registerDownload(String
contentAccessDownloadDescriptor,
Date downloadStart)

API described in section 7.4.1.1 to download content
described in the contentAccessDownloadDescriptor. Data
structure of the contentAccessDownloadDescriptor as
described in Annex E.1 “Content Access Download
Descriptor Format”

If the OITF includes the Content Download functional entity
,the information in the contentAccessDescriptor is passed to
the Content Download functional entity to download content
over UNIT-17 using HTTP as described in [PROT] section
5.2.3.1 ‘Protocol over UNIT-17’ and section 4.6.4 “Download
protocol(s)”.

registerDownload(String URL,
String contentType, Date
downloadStart)

API described in section 7.4.1.1 to download the content
identified by the given URL.

If the OITF includes the Content Download functional entity,
the URL is passed to the Content Download functional entity
to download content over UNIT-17 using HTTP as
described in section 5.2.3.1 of [PROT].

As specified in section 7.4.1.1, the contentType attribute
can be used to evaluate if the content type is part of the list
of accepted content types of the OITF.

If contentType has value
“application/vnd.oipf.ContentAccessDownload+xml
”, the method SHALL return a download identifier, after
which the OITF SHALL immediately fetch the Content
Access Download Descriptor, after which the same SHALL
happen as if registerDownload() had been called.

registerDownload(String CRID,
String IMI, Date downloadStart)

API described in section 7.4.2 to download content
described in a BCG record.

If the OITF includes the Content Download functional entity,
<CRID,IMI> BCG tuple is resolved to an URL as described
in 4.3 of [META] and passed to the Content Download
functional entity to download content over UNIT-17 using
HTTP as described in section 5.2.3.1 of [PROT].

8.2.2 OITF-IG Interface (Managed Services Only)
This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification
[PROT] for APIs between the OITF and the Network over reference points HNI-IGI. Some methods and properties are
closely associated to HNI-IGI and are included in this section. These are the RTSP control, reference point UNIS-11, and
IGMP control, reference point UNIS-13,

8.2.2.1 Streaming CoD
The following tables describe the mapping of several methods of the CEA-2014 AV embedded object to the HNI-IGI
protocol interfaces defined in [PROT].

Method Procedures

play(Number speed) Selection of a content item results in session initiation and access to
content stream.

Parameters needed to build the offer SDP may be pre defined

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 214 (289)

Method Procedures

locally in the OITF or the OITF SHALL request the IG to retrieve
missing SDP parameters as described in [PROT] section 5.2.2.1
’Protocol over HNI-IGI’.

If the OITF does not have all transport parameters (RTP or UDP
transport for MPEG2TS encapsulation or direct RTP, FEC layers
addresses and ports), code information or bandwidth information to
populate the SDP the OITF SHALL prompt the IG to send
OPTIONS request in order to retrieve the missing parameters.

The OITF SHALL provide the following information for the
OPTIONS request. Not all required headers are listed. Refer to the
Protocol specification [PROT] for a complete list.

X-
OITF-
Reques
t-Line

Identify the HNI-IGI method with the content
identifier as described by the data property. eg.
OPTION sip:PSI-
Twister@IPTV_Service_Control.orange.com
SIP/2.0

X-
OITF-
From

Local defined OITF CurrentUser property. eg.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-
OITF-
To

Copied from the data property. eg.
sip: PSI-
Twister@IPTV_Service_Control.orange.com

The response to the OPTIONS message request contains the
information to populate the SDP offer.

The OITF prepares an SDP offer and requests the IG to initiate a
session, in addition to the SDP the following parameters are
forwarded from the OITF to the IG. Not all required headers are
listed. Refer to the Protocol specification [PROT] for a complete list.

X-
OITF-
Reques
t-Line

Identify the HNI-IGI method with the content
identifier as described by the data property. eg.
INVITE sip:PSI-
Twister@IPTV_Service_Control.orange.com
SIP/2.0

X-
OITF-
From

Local defined OITF CurrentUser property. eg.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-
OITF-
To

Copied from the data property. eg.
sip: PSI-
Twister@IPTV_Service_Control.orange.com

After a successful session setup the OITF SHALL use the media
player to access the RTSP URI with the session ID negotiated and
received as part of the SDP offer, described in [PROT]
section 7.1.1.2 ‘RTSP for managed model UNIS-11 and NPI 10’.

The OITF SHALL send an RTSP PLAY over UNIS-11 using
attribute values received in the SDP from the session initiation
procedure. The RTSP PLAY is as described in the [PROT]
section 7.1.1.2 ‘RTSP for managed model UNIS-11 and NPI 10’.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 215 (289)

Method Procedures

The RTSP fields in the RTSP PLAY message SHALL be filled as
follows:

o The RTSP URL SHALL be set from the SDP h-uri attribute in
the case of an absolute URI. The “data” property SHALL be
updated with the SDP h-uri attribute. If the value of h-uri is a
relative URI that is in the form of a media path, then the RTSP
absolute URL is constructed by the OITF using the SDP
IPAddress (from c-line) and port (from m-line) as the base
followed by h-uri value for the media path.
(eg. rtsp://10.5.1.72:22554/TV3/823527)

o The RTSP Scale header SHALL be set to the value specified in
argument speed in method play. The argument SHOULD equal
one of the values in the playSpeeds property. The Scale values
[RTSP sec 12.34] are as follows:

 1 indicates normal play.

 If not 1, the value corresponds to the rate with respect to
normal viewing rate.

 A negative value indicates reverse direction.

If the speed argument of method play does not equal a supported
play speed indicated by the playSpeeds property, the player SHALL
play the content at the closest available playback speed. The play()
method SHOULD only return false if the best effort to play back the
file at any speed has failed.

The actual playback speed SHALL be available through the “speed”
property of the A/V Control object.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

stop() The method enables the OITF to terminate and ongoing CoD
session. The OITF SHALL request the IG to terminate the session
as described in [PROT] section 5.2.2.1 ’Protocol over HNI-IGI’.

The OITF SHALL include the following information from the request.
Not all required headers are listed. Refer to the Protocol
specification [PROT] for a complete list.

X-
OITF-
Reques
t-Line

Identify the HNI-IGI method with the content
identifier as described by the data property. eg.
BYE sip:PSI-
Twister@IPTV_Service_Control.orange.com
SIP/2.0

X-
OITF-
From

Local defined OITF CurrentUser property.
eg.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-
OITF-
To

Copied from the data property. eg.
sip: PSI-
Twister@IPTV_Service_Control.orange.com

The OITF SHALL remove all context information relevant to the
terminated COD session upon a successful response from the IG.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 216 (289)

Method Procedures

seek(Integer pos) Sets current play position to “pos”, by using the “Range” parameter
in the RTSP PLAY as described in [PROT] section 7.1.1.2 ‘RTSP
for managed model UNIS-11 and NPI 10’.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged
event indicating a new playback position of “pos”.

play(0) This method causes the OITF to send an RTSP PAUSE message
(refer to [PROT] section 7.1.1.2 ‘RTSP for managed model UNIS-11
and NPI-10’). The RTSP PAUSE message SHALL include:

 The RTSP URL SHALL be set to the value retrieved
from the fmtp:iptv_rtsp h-uri attribute of the SDP
answer.

 Session header SHALL be set as specified in the SDP
answer fmtp:iptv_rtsp h-session attribute

After a successful response to the RTSP PAUSE message has
been received, the OITF SHALL generate a PlaySpeedChanged
event indicating a playback speed of 0.

next() Not Supported. Note: Track information is not supported in the
protocol specification and therefore out of scope.

previous() Not Supported. Note: Track information is not supported in the
protocol specification and therefore out of scope.

Property Procedures

read/write String data This property holds the URL that identifies the content, as defined in
section 4.7.1. See [PROT] section 6.2.2.1.1 ‘Protocol over UNIS-8’
for details on CoD URI.

It is used by the OITF compose the following headers for requests
towards the IG
X-OITF-Request-Line

X-OITF-To

If the “data” property of the AV Control object refers to a Content-
Access Streaming Descriptor (i.e. the object has type
“application/vnd.oipf.ContentAccessStreaming+xml” as
defined in section 7.14.2), the OITF must perform the following steps
prior to performing the procedures defined in [PROT] as described for
method play():

• An HTTP GET request SHALL be made with the Request-
URI set to the URL of the Content-Access Descriptor as
denoted by the “data” property of the AV Control object.

• After the server has returned a Content Access Streaming
Descriptor (i.e. a document with type
“application/vnd.oipf.ContentAccessStreaming+xm
l”), the OITF SHALL interpret the contents of the Content-
Access Descriptor and choose a URL defined by one of the
<ContentURL> elements. The criteria for choosing a URL
can be the DRM system supported by the OITF. The URL
SHALL then be used for setting up a Streaming CoD session,
after which playback can be started (when the play()

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 217 (289)

Property Procedures

method is invoked). The “data” property of the AV object
SHALL be changed to represent the chosen URL.

• Based on the information retrieved from the Content-Access
Streaming Descriptor, the OITF SHALL passing the
<DRMControlInformation> to the appropriate DRM agent,
and SHOULD initialize the AV playback, i.e. by loading the
correct codecs as identified by the Content-access Streaming
Descriptor.

readonly Number
playPosition

The property holds the current play position in milliseconds of the
media referenced by the data property. The property value SHALL be
based on the value retrieved using the RTSP GET_PARAMETERS
method and parameter “position” (refer to [PROT] section 7.1.1.2
‘RTSP for managed model UNIS-11 and NPI-10’) adjusted for played
duration and used scale.

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number
playSpeeds[]

The property holds the available speeds, or referred in RTSP as
Scale, to be used to change the playback speed. The property value
SHALL be based on the value retrieved using RTSP
GET_PARAMETERS method and parameter “scales” (refer to
[PROT] section 7.1.1.2 ‘RTSP for managed model UNIS-11 and NPI-
10’).

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number
playTime

The property holds the total duration in milliseconds of the media
referenced by the data property. The property value SHALL be based
on the value retrieved using RTSP GET_PARAMETER method and
parameter “duration” (refer to [PROT] section 7.1.1.2 ‘RTSP for
managed model UNIS-11 and NPI10’).

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number
playState

No procedures defined since it is not related to protocol specification.

readonly Number error No procedures defined since it is not related to protocol specification.

readonly Number speed Float value indicating the actual playback speed for the content
referenced by the data property. The normal default playback speed
is represented by value 1.

Intrinsic event Procedure

onPlaySpeedChanged When RTSP ANNOUNCE with either beginning-of-stream or
end-of-stream codes arrives the OITF SHALL generate
onPlaySpeedChanged event with a speed value of 0.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 218 (289)

onPlayPositionChanged When the response to the RTSP PLAY with Range header
request (Range is included when performing seek() with a
position) the OITF SHALL generate onPlayPositionChanged
event with the accepted position.

8.2.2.2 Scheduled Content
8.2.2.2.1 Conveyance of channel list
Service discovery description procedure as described in [PROT] section 6.3.1.1 ‘Service Provider discovery’ and [PROT]
Annex B 2.3 ‘IPTV Service discovery description’ enables the OITF to obtain the URL to access the broadcast channel
information. The OITF SHALL utilise UNIS-7 using this URL to obtain the Broadcast Discovery Record.

8.2.2.2.2 Switching channels

Methods Procedures

setChannel(Channel
channel, Boolean
trickplay, String
contentAccessDescriptorURL
)

The setChannel() method of the <video/broadcast> object
SHALL be used to initiate a broadcast session or switch
channels. The procedures that are performed over the HNI-IGI
reference point depend on the current state of broadcast
session, either it is active or not. Note that an inactive broadcast
session means no service is being viewed.

Unless the channel is an IMS based IPTV service (see below),
the OITF SHALL send and IGMP Leave and an IGMP Join
request on the UNIS-13 as described in [PROT] section 8.1.1.1
‘Procedure for Scheduled Content on UNIS-13’.

If the channel is an IMS based IPTV service (i.e. if it is of type
ID_IPTV_SDS and if the corresponding service has a "sip-igmp-
rtp-udp" or "sip-igmp-udp" file format specified in its SD&S BDR
record), the following steps are taken:

Session Initiation

The OITF SHALL generate a session initiation request over the
HNI-IGI including and SDP offer as described in [PROT] section
5.2.1 ‘Scheduled Content’. The bandwidth is set according to
the explanation under heading “Selection of Bandwidth” further
down.

If a “contentAccessDescriptorURL” has been specified for the
setChannel() method, the OITF must perform the following
steps prior to performing the procedures defined in [PROT] for
performing setChannel() as described below:

• An HTTP GET request SHALL be made with the
Request-URI set to the URL of the Content-Access
Descriptor as denoted by the “contentAccessDescriptor”
attribute.

• Based on the information retrieved from the Content-
Access Descriptor, the OITF SHALL passing the
<DRMControlInformation> to the appropriate DRM
agent.

The OITF SHALL provide the following information as part of the
scheduled session initiation request as described in [PROT]
section 6.2.1 ‘Scheduled Content’. Not all required headers are
listed. Refer to the Protocol specification [PROT] for a complete
list.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 219 (289)

X-OITF-
Request
-Line

Identify the HNI-IGI method with the well known PSI
(Public Service Identifier) of the scheduled content. eg.
INVITE
sip:IPTV_SC_Service@iptv.ericsson.com
SIP/2.0

X-OITF-
From

Local defined OITF CurrentUser property. eg.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To

PSI of the scheduled content. eg.
sip:IPTV_SC_Service@iptv.ericsson.com

The Offer SDP included in the OITF be SHALL have attributes
as described in [PROT] Annex E.2 ‘Service Package SDP
attributes.

On positive response to the INVITE request the OITF SHALL
send an IGMP Join request on the UNIS-13 as described in
[PROT] section 8.1.1.1 ‘Procedure for Scheduled Content on
UNIS-13’.

Session Modification

If the bandwidth conditions change as described under heading
“Selection of Bandwidth” further down then the OITF SHALL
generates a session modification request over the HNI-IGI
including the new SDP offer.

The OITF SHALL provide the following information as part of the
scheduled session modification request as described in [PROT]
section 6.2.1 ‘Scheduled Content’. Not all required headers are
listed. Refer to the Protocol specification [PROT] for a complete
list.

X-OITF-
Request
-Line

Identify the HNI-IGI method with the well known PSI
(Public Service Identifier) of the scheduled content. eg.
INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0

X-OITF-
From

Local defined OITF CurrentUser property. eg.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To

PSI of the scheduled content. eg.
sip:IptvBroadcast@iptv.ericsson.com

The Offer SDP included by the OITF SHALL have attributes as
relevant to the new channel as described in [PROT] Annex E.2
‘Service Package SDP attributes’.

On receiving a successful response to the INVITE request the
OITF SHALL send and IGMP Leave and IGMP Join request on
the UNIS-13 as described in [PROT] section 8.1.1.1 ‘Procedure
for Scheduled Content on UNIS-13’.

No Session Modification

If the bandwidth conditions as described under heading
“Selection of Bandwidth” further down have not changed then
the OITF SHALL send a membership report to leave the
previously viewed channel, if applicable, and with the same
membership report join to the multicast group associated with
the selected channel. The multicast group information is

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 220 (289)

retrieved from the Broadcast Discovery Record.

Selection of Bandwidth

The bandwidth to be used for the broadcast session depends on
the information provided in the Broadcast Discovery Record
(refer to section 3.2.2.2 of [META], ‘Bandwidth Renegotiation’).
The Broadcast Discovery Record uses the term “service” to
indicate a channel.

If the TimeToRenegotiate (TTR) element is not provided within
the IPService of the Broadcast Discovery Record then the
bandwidth SHALL be based on the maximum bandwidth for all
the services in the Broadcast Discovery Record. In this case
only one session initiation is performed at initial activation of
broadcast service, and no session modification is required.

If the TTR element is provided then the MaxBitRate from the
new service and current service are compared. If broadcast
service is not active and there is no active current service,
session initiation is performed with the new service MaxBitRate.
For already active broadcast service there are three conditions.

• If the MaxBitrate of the new service is greater than that
of the current service and the reserved bandwidth is
exceeded, network bandwidth reservation using the
MaxBitrate of the new service SHALL occur immediately
with session modification to ensure sufficient bandwidth
is made available for the new service.

• If the MaxBitrate of the new service is equal to that of
the current service, network bandwidth reservation
procedures SHALL NOT be performed as sufficient
bandwidth is already available for the new service.

• If the MaxBitrate of the new service is less than that of
the current service and there is no pending TTR timer, a
timer using the TTR element of the new service is
started which will renegotiate the bandwidth with
session modification.

Note that at every channel change if there is a pending timeout
for session modification due to a previous service change then
the timer is restarted. When the timer expires the bandwidth for
the currently viewed service is used in a session modification.

The session initiation, session modification and no session
modification are further described above.

8.2.2.2.3 End broadcast service

Methods Procedures

release() The release method of the video/broadcast object causes the OITF to
perform an IGMP Leave on the active broadcast session as described
in [PROT] section 8.1.1.1 “Procedure for leaving a Scheduled Content
service”.

If the channel has an idType of ID_IPTV_SDS, the OITF SHALL then
execute a session termination procedure by sending a BYE request
over the HNI-IGI interface as described in section [PROT] section
5.2.1.1 ‘Protocol over HNI-IGI’. The request SHALL include the
following information. Not all required headers are listed. Refer to the
Protocol specification [PROT] for a complete list.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 221 (289)

X-OITF-
Request
-Line

Identify the HNI-IGI method with the well known PSI
(Public Service Identifier) of the scheduled content. eg.
INVITE
sip:IPTV_SC_Service@iptv.ericsson.com
SIP/2.0

X-OITF-
From

Local defined OITF CurrentUser property. eg.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To

PSI of the scheduled content. eg:
sip:IPTV_SC_Service@iptv.ericsson.com

8.2.2.3 Communication Services APIs

Methods Procedures

registerUser(String userId,
String pin)

Performs IMS registration with the specified user ID as
described in [PROT] section 5.3.6.1 ‘Procedure for User
Registration and Authentication in Managed Model on HNI-IG
Interface’.

deRegisterUser(String userId) Performs IMS de-registration with the specified user ID as
described in [PROT] section 5.3.6.1 ‘Procedure for User
Registration and Authentication in Managed Model on HNI-IG
Interface’.

subscribeNotification
(FeatureTagCollection
featureTagCollection, Boolean
performuserregistration)

OITF maintains applications that have subscribed to
notifications. If applicable it will send a re-registration to the IG.
When new messages arrive at the IG it shall notify the OITF. (as
defined in [PROT] section 5.5.1.2).

unsubscribeNotification () This is a local call within OITF to notify that the DAE application
shall not receive unsolicited notification. The OITF shall use
native code to handle new dialogues. Any feature tag values that
were added by the DAE application are removed for the
indicated userId since no native code is setup to process the
new dialogues for the feature tag values.

8.2.3 Network (Unmanaged Services only)
This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification
[PROT] for APIs between the OITF and the Network. These are the RTSP control, reference point UNIS-11, reference
point UNIS-13, and reference point UNIT-17.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 222 (289)

8.2.3.1 Streaming CoD

Method Procedures

play(Number speed) The "speed" parameter is a floating point value indicating the
requested playback speed. A value of 1 represents normal playback
speed, and other values are relative to this.

A “speed” value of zero SHALL not initiate any procedures.

RTSP

The RTSP URL signalled by the “data” attribute SHALL be used to
initiate the process defined in [PROT] section 7.1.1.1.1. The “data”
attribute SHALL furthermore be updated with the new URI after
redirection requests (moved). The RTSP PLAY request SHALL
include a "Scale" header set to the value of the "speed" parameter
passed to the API. The server will play the stream at the specified
speed, if supported.

If property oitfNoRTSPSessionControl is set to true then the
RTSP messages DESCRIBE and SETUP are not used. If the play()
method is called with a non-zero speed the property
oipfRTSPSessionId is copied to the RTSP SessionId header for
the RTSP PLAY request. If the oipfRTSPSessionId is undefined
the play() method SHALL fail.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

HTTP

The HTTP URL signalling by the “data” attribute SHALL be used to
initiate the process defined in [PROT] section 5.2.2.2. The “data”
attribute SHALL furthermore be updated with the new URI after
redirection requests (moved). The “speed” parameter SHALL be
passed to the OITF media player, which SHOULD attempt to play
back the content at the requested speed.

If the media player successfully begins to play back the content, the
OITF SHALL generate a PlaySpeedChanged event indicating the
actual playback speed.

stop() RTSP

The OITF SHALL initiate the process defined in [PROT]
section 7.1.1.1.2 except if the property
oitfNoRTSPSessionControl is set to true.

HTTP

The OITF SHALL stop playback. The OITF MAY close the connection
to the server and MAY clear any buffered content.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 223 (289)

Method Procedures

seek(Integer pos) RTSP

Sets current play position to “pos”, by using the “Range” parameter in
the RTSP PLAY as described in [PROT] section 7.1.1.1 ‘RTSP for
managed model UNIS-11 and NPI 10’.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged event
indicating a new playback position of “pos”.

HTTP

The OITF SHALL attempt to playback from the specified position
“pos”. It MAY use the RANGE header as described in [PROT] section
5.2.2.2 as necessary.

If the media player successfully begins to play back the content from
the specified position, the OITF SHALL generate a
PlayPositionChanged event indicating a new playback position of
“pos”.

play(0) RTSP

This method causes the OITF to send an RTSP PAUSE message
(refer to [PROT] section 7.1.1.2 ‘RTSP for managed model UNIS-11
and NPI-10’). The RTSP PAUSE message SHALL include:

After a successful response to the RTSP PAUSE message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating a play speed of 0.

HTTP

The OITF SHALL pause playback.

If the media player successfully pauses playback, the OITF SHALL
generate a play speed event indicating a PlaySpeedChanged of 0.

next() Not Supported. Note: Track information is not supported in the
protocol specification and therefore out of scope.

previous() Not Supported. Note: Track information is not supported in the
protocol specification and therefore out of scope.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 224 (289)

Property Procedures

read/write String data RTSP

This property holds the RTSP URI for the content item.

HTTP

The property holds the HTTP URI for the content item.

If the “data” property of the AV Control object refers to a
Content-Access Streaming Descriptor (i.e. the object has type
“application/vnd.oipf.ContentAccessStreaming+xml”
as defined in section 7.14.2), the OITF must perform the
following steps prior to performing the procedures defined in
[PROT] as described for method play():

• An HTTP GET request SHALL be made with the
Request-URI set to the URL of the Content-Access
Streaming Descriptor as denoted by the “data” property
of the AV Control object.

• After the server has returned a Content Access
Streaming Descriptor (i.e. a document with type
“application/vnd.oipf.ContentAccessStreaming
+xml”), the OITF SHALL interpret the contents of the
Content-Access Streaming Descriptor and choose a
URL defined by one of the <ContentURL> elements.
The criteria for choosing a URL can be the DRM system
supported by the OITF. The URL SHALL then be used
for setting up a Streaming CoD session, after which
playback can be started (when the play() method is
invoked). The “data” property of the AV object SHALL
be changed to represent the chosen URL.

• Based on the information retrieved from the Content-
Access Streaming Descriptor, the OITF SHALL passing
the <DRMControlInformation> to the appropriate DRM
agent, and SHOULD initialize the AV playback, i.e. by
loading the correct codecs as identified by the Content-
access Streaming Descriptor.

readonly Number
playPosition

The property holds the current play position in milliseconds of
the media referenced by the data property.

For RTP, The property value SHALL be based on the value
retrieved using the RTSP GET PARAMETERS method and
parameter “position” (refer to [PROT] section 7.1.1.2 ‘RTSP
for managed model UNIS-11 and NPI-10’) adjusted for played
duration and used scale.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 225 (289)

readonly Number
playSpeeds[]

For RTSP, the property holds the available speeds, or referred in
RTSP as Scale, to be used to change the playback speed. The
property value SHALL be based on the value retrieved using
RTSP GET PARAMETERS method and parameter “scales”
(refer to [PROT] section 7.1.1.2 ‘RTSP for managed model
UNIS-11 and NPI-10’).

For HTTP, the possible playback speeds are determined by the
OITF internal capabilities and buffering model, and the speed at
which content is delivered. The OITF MAY make this information
available via this property.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number playTime The property holds the total duration in milliseconds of the media
referenced by the data property.

For RTSP, the property value SHALL be based on the value
retrieved using RTSP GET_PARAMETER method and
parameter “duration” (refer to [PROT] section 7.1.1.2 ‘RTSP
for managed model UNIS-11 and NPI10’).

For HTTP, if the data property references a content-access
streaming descriptor that includes the optional “Duration”
attribute then the property value SHALL be derived from the
value encoded in that attribute.

Otherwise, if the data property references a file in the MP4 file
format (as defined in section 4.2 of [MEDIA]) then

• If that file is fragmented, the property value SHALL be
derived from the value indicated in the fragment_duration
of the ‘mehd’ box if that box is present

• If that file is not fragmented, the property value SHALL be
derived from the value indicated in the duration of their
‘mvhd’ box. Otherwise the property value MAY be
determined using the “Content-Length” HTTP header,
although it is noted that this method does not work for
variable bit rate content.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number playState No procedures defined since it is not related to protocol
specification.

readonly Number error No procedures defined since it is not related to protocol
specification.

readonly Number speed Float value indicating the actual playback speed of the player for
the content referenced by the data property. The normal default
playback speed is represented by value 1.

Intrinsic event Procedure

onPlaySpeedChanged When RTSP ANNOUNCE with either beginning-of-stream or
end-of-stream codes arrives the OITF SHALL generate
onPlaySpeedChanged event with a speed value of 0.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 226 (289)

onPlayPositionChanged When the response to the RTSP PLAY with Range header
request (Range is included when performing seek() with a
position) the OITF SHALL generate onPlayPositionChanged
event with the accepted position.

8.2.3.2 Scheduled content
8.2.3.2.1 Switching channels

Methods Procedures

setChannel(Channel channel, Boolean
trickplay, String contentAccessDescriptorURL)

The setChannel method of the
<video/broadcast> object SHALL
be used to initiate a broadcast
session or switch channels. If the
channel has an idType of
ID_IPTV_URI, the OITF SHALL send
and IGMP Leave and an IGMP Join
request on the UNIS-13 as described
in [PROT] section 8.1.1.1 ‘Procedure
for Scheduled content on UNIS-13
with Session Initiation’.

8.2.3.2.2 End broadcast service

Methods Procedures

release() The release method of the video/broadcast object causes the OITF to perform
an IGMP Leave on the active broadcast session as described in [PROT] Sec.
8.1.1.1 “Procedure for Scheduled content on UNIS-13 with Session Initiation”.

8.3 URI Schemes and their usage
The following table lists possible URL schemas and their usages within DAE documents (XHTML, JavaScript, images,
and references to A/V content). If a certain URL scheme is supported, the corresponding protocols to an URL scheme
SHALL be supported as defined by the reference(s)

Table 13: URI schemes and usages

URI
scheme

Usage Reference Comments

dvb-mcast Scheduled content delivery DVB-MCAST URI
scheme as defined by
Annex A1 of [TS 102
539]

A URL to refer to a
scheduled content
channel supported by
the OITF and
delivered via
multicast.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 227 (289)

URI
scheme

Usage Reference Comments

dvb Application launching Locator for applications
in SD&S as defined by
section 6.3.3 of [TS
102851]

The orgid and appid
encoded in the DVB
URI are compared
with the applications
signalled in SD&S to
identify one with the
same orgid and
appid.

Transport of DAE documents Section 5.3.3.1 of
[PROT]

Section 5.3 of
[CEA2014A]

Section 5 of [CSP]

A URL to refer
documents supported
by DAE.

http and
https

COD streaming
Annex F of [PROT]

COD streaming
Section 4.3 of [META]

crid

Programme identification via
BCG Section 4.3 of [META]

COD streaming (“sip-rtsp-rtp-
udp”)

sip

COD streaming(“sip-rtsp-udp”)

rtsp COD streaming

Annex F of [PROT]

A Content URL
specified in the data
attribute of A/V
Control object as
defined in the section
5.7.1 “Streamed A/V
content” of
[[CEA2014A].

A Content URL
specified in a Content
Access Descriptor
described in Annex E.

igmp Scheduled content Annex F of [PROT]. The transport IP
Multicast Address to
access the service as
defined in [TS 102
034].

8.4 Mapping from APIs to Content Formats
8.4.1 Character Conversion
Except for the getSIDescriptors() method (see 7.16.2.4), the OITF SHALL translate all characters extracted from DVB SI
tables and descriptors into their UTF-16 equivalent when exposing the character in a JavaScript character or string object.
In addition, the following rules SHALL apply:

 The character table of text fields in DVB SI SHALL be determined as specified in EN 300 468 Annex A. The
default character table MAY be determined by the local broadcast system.

 The bytes denoting the character table and the control codes for character emphasis on and off SHALL be
filtered out by the OITF.

 The control codes for "CR/LF" SHALL be expanded to the two separate UTF-16 characters U+000D and
U+000A.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 228 (289)

8.4.2 AVComponent
AVComponent objects represent the components in a stream. For an MPEG-2 transport stream, the set of components
SHALL be the audio, video and subtitle components listed in the PMT of the service. For content in the MP4 file format,
the set of components SHALL be the audio, video and subtitle tracks listed in the “moov” box.

The following table shows the mapping from the properties of the AVComponent class to the data carried inside the
MPEG-2 TS and MP4 file format.

Property

Name and Type

MPEG-2 TS

With DVB-SI
component_

descriptor in SDT
and/or EIT

MPEG-2 TS

Without DVB-SI SDT
and EIT

MP4 FF

Name: componentTag

Type: Integer

The contents of the component_tag field in the
stream_identifier_descriptor in PMT

Not defined

Name: pid

Type: Integer

The PID of the stream in the PMT trackID

Name: Type

Type: One of the following
constants
COMPONENT_TYPE_VID
EO /
COMPONENT_TYPE_AU
DIO /
COMPONENT_TYPE_SU
BTITLE

May be derived as follows:

 A value of 0x02 or 0x1B in the stream_type field
in the PMT VIDEO.

 A value of 0x03 or 0x11 in the stream_type field
in the PMT AUDIO.

 A value of 0x06 in the stream_type field in the
PMT and the presence of a
DTS_audio_stream_descriptor in the ES loop in
the PMT AUDIO.

 A value of 0x06 in the stream_type field in the
PMT and the presence of an AC3_descriptor or an
Enhanced_AC3_descriptor in the ES loop in the
PMT AUDIO.

 A value of 0x06 in the stream_type field in the
PMT and the presence of a subtitling_descriptor
in the ES loop in the PMT SUBTITLES.

 A value of 0x06 in the stream_type field in the
PMT and the presence of a teletext_descriptor in
the ES loop in the PMT and an entry in that
descriptor with Teletext_type set to 0x02 or 0x05

 SUBTITLES.

Track has a
VisualSampleEntry
(handler_type =”vide”) ->
COMPONENT_TYPE_VID
EO

Track has an
AudioSampleEntry
(handler_type = “soun”) ->
COMPONENT_TYPE_AU
DIO

Name: Encoding

Type: A string identifying
the video or audio format as
defined in section 3 of
[MEDIA]

May be derived as follows:

 If a video component is present (see mapping for
Type above) “video/mpeg” or “video/mp2t”.

 If no video is present but an audio component is
present:

• A value of 0x03 in the stream_type field in
the PMT “audio/mpeg”.

• A value of 0x11 in the stream_type field in
the PMT and the profile_and_level field in
that descriptor indicates MPEG-4 AAC or

Track has a sample
description type “avc1” ->
“video/mp4”.

Track has a sample
description type “mp4a” ->
“audio/mp4”

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 229 (289)

Property

Name and Type

MPEG-2 TS

With DVB-SI
component_

descriptor in SDT
and/or EIT

MPEG-2 TS

Without DVB-SI SDT
and EIT

MP4 FF

MPEG-4 HE AAC “audio/mp4”.

• A value of 0x11 in the stream_type field in
the PMT and the profile_and_level field in
that descriptor indicates MPEG-4 HE AAC
v2 “audio/aacp”.

• A value of 0x06 in the stream_type field in
the PMT and the presence of a
DTS_audio_stream_descriptor in the ES loop
in the PMT “audio/vnd.dts”.

• A value of 0x06 in the stream_type field in
the PMT and the presence of an
AC3_descriptor in the ES loop in the PMT
“audio/ac3”.

Name: Encrypted

Type: Boolean

May be derived from any of the following:

 Presence of a CA_descriptor in the PMT in the
program information loop.

 Presence of a CA_descriptor in the PMT in the
elementary stream information loop describing
the stream.

Not defined

Name: Aspect ratio

Type: Number containing
width divided by height as a
decimal

Only defined for video
components.

Derived from the
stream_content and
component_type fields in
the component_descriptor.

Undefined Not defined

Name: Language

Type: String containing an
ISO 639.2 language code as
defined in [ISO 639.2]

Only defined for audio and
subtitle components.

For audio components, the contents of the
ISO_639_language_code field in the
ISO_639_language_descriptor In the ES loop of the PMT
unless overridden by the ISO_639_language_code field in
the supplementary_audio_descriptor.

For subtitles, the contents of the ISO_639_language_code
field in the subtitling_descriptor or teletext_descriptor, as
appropriate.

The contents of the language
field in the media header
“mdhd” of the track.

Name: Audio Description

Type: Boolean - True if is
component is an audio
description

Only defined for audio
components.

True if any of the following is true:

 There is an audio component with an
ISO_639_language_descriptor in the PMT with
the audio_type field set to 0x03

 There is a supplementary_audio_descriptor with
the editorial_classification field set to 0x01

 There is an ac-3_descriptor or an enhanced_ac-
3_descriptor with a component_type field with the

Not defined

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 230 (289)

Property

Name and Type

MPEG-2 TS

With DVB-SI
component_

descriptor in SDT
and/or EIT

MPEG-2 TS

Without DVB-SI SDT
and EIT

MP4 FF

service_type flags set to Visually Impaired.

Otherwise false.

Name: Audio channels

Type: Number indicating 5
for 5.1, 7 for 7.1, 2 for stereo

Only defined for audio
components.

 Not defined

Name: Hearing impaired

Type: Boolean - Has value
true if the stream is intended
for the hearing-impaired
(e.g. contains a written
description of the sound
effects), false otherwise.

Only defined for subtitle
components.

True if one of the following is true:

 There is a subtitling_descriptor with the
subtitling_type field set to 0x20, 0x21, 0x22, 0x23
or 0x24.

 There is a teletext_descriptor with a teletext_type
field with a value of 0x05.

Not defined

8.4.3 Channel
Channel objects represent data streams carrying content that the OITF can tune to. In some cases the channel object may
have been explicitly created by an application but usually they will have been created when the OITF discovers the
channel when performing a scan or reading an SD&S file. The following tables show the mapping from the properties of
the Channel class to the source of the data for that property.

All references in the tables to the SDT are for the SDT Actual table (i.e. the SDT carried in the MPEG2-TS with a PID
value of 0x0011 and a table_id value of 0x42, as defined in EN 300 468 [EN300468]), and references to the
BroadcastDiscovery and PackageDiscovery are to the elements of those names in SD&S.

For channels of type ID_DVB_*:

Property name Source Comment

channelType Assigned by the terminal. Assigned by the terminal to TYPE_TV or TYPE_RADIO based on
the service type signalled in SDT/service descriptor/service type or
undefined otherwise.

idType Assigned by the terminal or
by the application.

Assigned by the terminal based on the type of channel, if the
channel was discovered by a channel scan, or by the application
using the value passed in the createChannelObject() method.

ccid

Assigned by the terminal. Unique identifier for the channel

tunerID Assigned by the terminal. Unique identifier for the tuner
onid

Assigned by the terminal or
by the application.

Assigned by the terminal from SDT.onid or by the application
using the value passed in to the createChannelObject() method.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 231 (289)

Property name Source Comment

nid Assigned by the terminal Assigned by the terminal as follows:

• If during the terminal configuration process, a network_id
value was selected (either explicitly or implicitly) and the
NIT subtable with that network_id value was used by the
terminal to discover the correct delivery system descriptor
of this channel, then the value of this property shall be that
network_id value.

• Otherwise, if there is exactly one NIT 'actual' subtable in
the Transport Stream that is carrying the channel then the
value of this property shall be the network_id in that
subtable. Terminals are not required to update the value if
it changes dynamically in the broadcast Transport Stream.

• Otherwise the value shall be undefined.
tsid

Assigned by the terminal or
by the application.

Assigned by the terminal from SDT.tsid or PAT.tsid or by the
application using the value passed in to the createChannelObject()
method.

sid

Assigned by the terminal or
by the application.

Assigned by the terminal from SDT.sid or by the application using
the value passed in to the createChannelObject() method.

sourceID Assigned by the terminal. Takes the value undefined
freq Assigned by the terminal. Takes the value undefined
cni Assigned by the terminal. Takes the value undefined
name Assigned by the terminal. Assigned by the terminal from SDT/service descriptor/service

name or undefined for Channel objects created by calls to the
createChannelObject() method.

majorChannel Assigned by the terminal. Either takes the value undefined or, in markets where logical
numbers are used, takes the value of the logical channel number
for the channel as signalled in the broadcast specification for that
market.

minorChannel Assigned by the terminal. Takes the value undefined
dsd Assigned by the terminal or

by the application.
Assigned by the application using the delivery system descriptor
passed in to the createChannelObject() method, or implementation
dependent in all other cases.

favourite Assigned by the terminal.
favIDs Assigned by the terminal.
locked Assigned by the terminal.
manualBlock Assigned by the terminal.
ipBroadcastID Assigned by the terminal. Takes the value undefined
channelMaxBit
Rate

Assigned by the terminal. Takes the value undefined

channelTTR Assigned by the terminal. Takes the value undefined
recordable Assigned by the terminal. Implementation dependent
longName Assigned by the terminal. Implementation dependent
description Assigned by the terminal. Implementation dependent
authorised Assigned by the terminal. Implementation dependent
genre Assigned by the terminal. Implementation dependent
hidden Assigned by the terminal or

by the application.
If the DVB broadcast system supports a logical channel number
mechanism that can identify channels that are not expected to be
offered to the user in a channel list then the value of this property
should be derived from that signalling. Otherwise the value of this
property is implementation dependent.
NOTE This specification does not itself include a logical channel
number mechanism for channels of type ID_TYPE_DVB_*.

logoURL Assigned by the terminal. Implementation dependent

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 232 (289)

For channels of type ID_IPTV_SDS:

Property name Source Comment

channelType Assigned by the terminal. Assigned by the OITF based on the value signalled in SDT/service
descriptor/service type in the stream if
BroadcastDiscovery/ServiceList/SingleService/SI@PrimarySISour
ce is “Stream”, otherwise assigned based on the value of
BroadcastDiscovery/ServiceList/SingleService/SI@ServiceType (if
present).

Otherwise, or if not known, set to undefined.

idType Assigned by the terminal or
by the application.

Assigned by the OITF to ID_IPTV_SDS if the channel was
discovered using SD&S metadata, or assigned by the application
using the value passed in the createChannelObject() method.

ccid Assigned by the terminal. Unique identifier for the channel
tunerID Assigned by the terminal. Unique identifier for the tuner if relevant or set to undefined
onid

Assigned by the terminal. Assigned by the OITF to the value signalled in
BroadcastDiscovery/ServiceList/SingleService/DVBTriplet@OrigN
etId

nid Assigned by the terminal. Implementation dependent.
tsid

Assigned by the terminal. Assigned by the OITF to the value signalled in
BroadcastDiscovery/ServiceList/SingleService/DVBTriplet@TSId

sid

Assigned by the terminal. Assigned by the OITF to the value signalled in
BroadcastDiscovery/ServiceList/SingleService/DVBTriplet@Servic
eId

sourceID Assigned by the terminal. Takes the value undefined
freq Assigned by the terminal. Takes the value undefined
cni Assigned by the terminal. Takes the value undefined
name Assigned by the terminal. Assigned by the OITF from SDT/service descriptor/service name

in the stream if
BroadcastDiscovery/ServiceList/SingleService/SI@PrimarySISour
ce is “Stream”, otherwise set to
BroadcastDiscovery/ServiceList/SingleService/SI/Name (if
present), otherwise set to
BroadcastDiscovery/ServiceList/SingleService/TextualIdentifier@S
erviceName

majorChannel Assigned by the terminal. Assigned by the OITF from
PackageDiscovery/Package/Service/LogicalChannelNumber (if
present), otherwise takes the value undefined

minorChannel Assigned by the terminal. Takes the value undefined
dsd Assigned by the terminal. Takes the value undefined
favourite Assigned by the terminal.
favIDs Assigned by the terminal.
locked Assigned by the terminal.
manualBlock Assigned by the terminal.
ipBroadcastID Assigned by the terminal or

by the application.
Assigned by the OITF to the DVB textual service identifier of the IP
broadcast service, specified in the format
“ServiceName.DomainName” with the ServiceName and
DomainName taken from the attributes of
BroadcastDiscovery/ServiceList/SingleService/TextualIdentifier, or
assigned by the application using the value passed in to the
createChannelObject() method

channelMaxBit
Rate

Assigned by the terminal. Assigned by the OITF to the value provided in
BroadcastDiscovery/ServiceList/SingleService/MaxBitRate (if
present), otherwise undefined

channelTTR Assigned by the terminal. Assigned by the OITF to the value provided in
BroadcastDiscovery/ServiceList/SingleService/TimeToRenegotiate
(if present), otherwise undefined

recordable Assigned by the terminal. Implementation dependent
longName Assigned by the terminal. Set by the OITF to the Name element that is a child of the BCG

ServiceInformation element describing the channel, where
the length attribute of the Name element has the value ‘long’

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 233 (289)

Property name Source Comment

description Assigned by the terminal. Set by the OITF to
BroadcastDiscovery/ServiceList/SingleService/SI/Description (if
present), otherwise set to the ServiceDescription element
that is a child of the BCG ServiceInformation element
describing this channel.

authorised Assigned by the terminal. Implementation dependent
genre Assigned by the terminal. Set by the OITF to

BroadcastDiscovery/ServiceList/SingleService/SI/ContentGenre (if
present), otherwise set to the values of any ServiceGenre
elements that are children of the BCG ServiceInformation
element describing the channel.

hidden Assigned by the terminal or
by the application.

Implementation dependent

logoURL Assigned by the terminal. Set by the OITF to the value of the first Logo element that is a
child of the BCG ServiceInformation element describing the
channel, when this element specifies the URL of an image

For channels of type ID_IPTV_URI:

Property name Source Comment

channelType Assigned by the terminal. Takes the value undefined.
idType Assigned by the

application.
Assigned by the application using the value passed in the
createChannelObject() method.

ccid Assigned by the terminal. Unique identifier for the channel
tunerID Assigned by the terminal. Unique identifier for the tuner if relevant or set to undefined
onid

Assigned by the terminal or
by the application.

Assigned by the application using the value passed in to the
createChannelObject() method

nid Assigned by the terminal Implementation dependent
tsid

Assigned by the terminal or
by the application.

Assigned by the application using the value passed in to the
createChannelObject() method

sid

Assigned by the terminal or
by the application.

Assigned by the application using the value passed in to the
createChannelObject() method

sourceID Assigned by the terminal. Takes the value undefined
freq Assigned by the terminal. Takes the value undefined
cni Assigned by the terminal. Takes the value undefined
name Assigned by the terminal. Takes the value undefined
majorChannel Assigned by the terminal. Takes the value undefined
minorChannel Assigned by the terminal. Takes the value undefined
dsd Assigned by the terminal. Takes the value undefined
favourite Assigned by the terminal.
favIDs Assigned by the terminal.
locked Assigned by the terminal.
manualBlock Assigned by the terminal.
ipBroadcastID Assigned by the terminal. Assigned by the application using the value passed in to the

createChannelObject() method
channelMaxBit
Rate

Assigned by the terminal. Takes the value undefined

channelTTR Assigned by the terminal. Takes the value undefined
recordable Assigned by the terminal. Implementation dependent
longName Assigned by the terminal. Takes the value undefined
description Assigned by the terminal. Takes the value undefined
authorised Assigned by the terminal. Implementation dependent
genre Assigned by the terminal. Takes the value undefined
hidden Assigned by the terminal or

by the application.
Implementation dependent

logoURL Assigned by the terminal. Takes the value undefined

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 234 (289)

8.4.4 Programme, ScheduledRecording, Recording and Download
The following table defines the mapping between the properties of the Programme, ScheduledRecording,
Recording and Download classes.

Property
name

Source Programme
Class

Property

ScheduledReco
rding Class

Property

Recording Class
Property (See

note 1)

Download Class
Property

state Assigned by the
terminal.

 N/A N/A Assigned and updated
by the terminal as
recording is carried
out.

Assigned by the terminal, ref
7.4.4.1 of OIPF.

id Assigned by the
terminal.

N/A N/A Unique internal
identifier for
recordings.

Unique internal identifier for
downloaded content.

startPaddi
ng

Assigned by the
terminal or the
application.

 N/A Default value
assigned by the
terminal; may be
overridden by the
application.

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

N/A

endPadding Assigned by the
terminal or the
application.

 N/A Default value
assigned by the
terminal; may be
overridden by the
application.

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

N/A

repeatDays Set by the
application

N/A The days on which
the recording will be
repeated as
assigned by the
application

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

N/A

name Assigned by the
terminal.

Assigned by the
terminal from
EIT/short_event
_descriptor/even
t name

Derived from
Programme object
when recording is
scheduled.

For manual
recordings, assigned
by the terminal (see
note).

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

Assigned by the terminal from
CADD.Title.

descriptio
n

Assigned by the
terminal.

Assigned by the
terminal from
EIT/short_event
_descriptor/desc
ription

Derived from
Programme object
when recording is
scheduled

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

Assigned by the terminal from
CADD.Synopsis if present.

longDescri
ption

Assigned by the
terminal.

Assigned by the
terminal from
EIT/extended_e
vent_descriptor/t
ext

Derived from
Programme object
when recording is
scheduled

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

N/A

startTime Assigned by the
terminal or
application.

Assigned by the
terminal from
EIT/event/start_t
ime.

Derived from
Programme object
when recording is
scheduled.

Assigned by the
application for
recordings
scheduled using the
recordAt() method.

For manual
recordings initiated
via a native UI,
assigned by the
terminal (see note).

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

Assigned by the terminal
based on the startTime
argument of
RegisterDownload().

recordingS
tartTime

Assigned by the
terminal.

N/A N/A The actual start time
of the recording.

N/A

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 235 (289)

Property
name

Source Programme
Class

Property

ScheduledReco
rding Class

Property

Recording Class
Property (See

note 1)

Download Class
Property

timeElapse
d

Assigned by the
terminal.

N/A N/A N/A Assigned by the terminal.

timeRemain
ing

Assigned by the
terminal.

N/A N/A N/A Assigned by the terminal.

duration Assigned by the
terminal or
application.

Assigned by the
terminal from
EIT/event/durati
on.

Derived by the
terminal from the
duration property of
the Programme
object when the
recording is
scheduled.

Assigned by the
application for
recordings
scheduled using the
recordAt() method.

For manual
recordings initiated
via a native UI,
assigned by the
terminal (see note).

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

N/A

recordingD
uration

Assigned by the
terminal.

N/A N/A The actual duration of
the recording.

N/A

channel Assigned by the
terminal.

Reference to
broadcast
channel where
content is
available. Set to
broadcast
content location.

Derived by the
terminal from the
ccid property of the
Programme object
when the recording
is scheduled.

Derived by the
terminal from the
value passed by the
application for
recordings
scheduled using the
recordAt() method.

For manual
recordings initiated
via a native UI,
assigned by the
terminal (see note).

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

N/A

channelID Assigned by the
terminal.

Populated from
ccid of the
channel carrying
this programme.

N/A N/A N/A

programmeI
D

Assigned by the
terminal.

If a programme
CRID is not
provided in the
EIT for the
programme then
this shall be
assigned by the
terminal from
EIT/event_id
and it shall be
encoded as a
decimal integer.
Otherwise this is
outside the
scope of the
present
document.

Derived from
Programme object
when recording is
scheduled

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

N/A

programmeI
DType

Assigned by the
terminal.

Assigned by the
terminal.

Derived from
Programme object
when recording is
scheduled

Derived by the
terminal from the
corresponding
property on the
ScheduledRecording
object.

N/A

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 236 (289)

Property
name

Source Programme
Class

Property

ScheduledReco
rding Class

Property

Recording Class
Property (See

note 1)

Download Class
Property

parentalRa
tings

Assigned by the
terminal

Populated from
EIT/parental_rati
ng_descriptor/rat
ing, where
present.

Derived from
Programme object
when recording is
scheduled.

For manual
recordings initiated
via a native UI,
assigned by the
terminal (see note).

Derived by the
terminal from the
parentalRating
property on the
ScheduledRecording
object.

Assigned by the terminal from
CADD.parentalRating if
present.

contentID Assigned by the
terminal.

N/A N/A N/A Assigned by the terminal from
CADD.contentID if present.

totalSize Assigned by the
terminal.

N/A N/A N/A Assigned by the terminal from
CADD.contentURL@size,
then updated to actual size
on disk at end of download.

contentURL Assigned by the
terminal.

N/A N/A N/A Assigned by the terminal from
CADD.contentURL.

drmControl Assigned by the
terminal.

N/A N/A N/A Assigned by the terminal from
CADD.DRMControlInformatio
n if present.

transferTy
pe

Assigned by the
terminal.

 N/A N/A N/A Assigned by the terminal from
CADD.contentURL.transferTy
pe.

originSite Assigned by the
terminal.

N/A N/A N/A Assigned by the terminal from
CADD.originSite.

originSite
Name

Assigned by the
terminal.

 N/A N/A N/A Assigned by the terminal from
CADD.originSiteName if
present.

iconURL

Assigned by the
terminal.

 N/A N/A N/A Assigned by the terminal from
CADD.iconURL if present.

longName Assigned by the
application

For Programme
objects created
using the
createprogramm
eObject()
method, this
may be set by
the application.

No standardised
mapping in
DVB-SI

Derived from
Programme object
when recording is
scheduled.

Derived by the
terminal from the
longName property on
the
ScheduledRecording
object.

N/A

episode Assigned by the
application

For Programme
objects created
using the
createprogramm
eObject()
method, this
may be set by
the application.

No standardised
mapping in
DVB-SI

Derived from
Programme object
when recording is
scheduled.

Derived by the
terminal from the
episode property on
the
ScheduledRecording
object.

N/A

totalEpiso
des

Assigned by the
application

For Programme
objects created
using the
createprogramm
eObject()
method, this
may be set by
the application.

No standardised
mapping in
DVB-SI

Derived from
Programme object
when recording is
scheduled.

Derived by the
terminal from the
totalEpisodes property
on the
ScheduledRecording
object.

N/A

blocked Assigned by the
terminal

Set based on
parental control
settings for
broadcast

N/A Set based on parental
control settings

N/A

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 237 (289)

Property
name

Source Programme
Class

Property

ScheduledReco
rding Class

Property

Recording Class
Property (See

note 1)

Download Class
Property

showType No standardised
mapping in
DVB-SI.

N/A No standardised
mapping in DVB-SI.

N/A

subtitles Assigned by the
terminal

Set in the
presence of
EIT/subtitle
component
descriptor for
broadcast
content for
content within
schedule.

N/A Set in the presence of
EIT/subtitle
component descriptor
for broadcast content
within scope of
schedule when the
recording starts.

N/A

isHD Assigned by the
terminal

Set in the
presence of an
EIT/component
descriptor with
stream_content
value 0x01 or
0x05 and a
component_type
value indicating
“high definition
video” as
defined in
table 26 of
[EN300468], for
broadcast
content within
scope of
schedule.

N/A Set in the presence of
an EIT/component
descriptor with
stream_content value
0x01 or 0x05 and a
component_type
indicating “high
definition video” as
defined in table 26 of
[EN300468], for
broadcast content
within scope of
schedule when the
recording starts.

N/A

audioType Assigned by the
terminal

Derived from
EIT/component
descriptors with
stream_content
value 0x02,
0x04 or 0x06 for
broadcast
content within
scope of
schedule.

N/A Derived from
EIT/component
descriptors with
stream_content value
0x02, 0x04 or 0x06 for
broadcast content
within scope of
schedule when the
recording starts.

N/A

isMultilin
gual

Assigned by the
terminal

Set when the set
of language
codes for
EIT/component
descriptors with
stream_content
value 0x02,
0x04 or 0x06
contains more
than one
language code
for broadcast
content within
scope of
schedule.

N/A Set when the set of
language codes for
EIT/component
descriptors with
stream_content value
0x02, 0x04 or 0x06
contains more than
one language code for
broadcast content
within scope of
schedule when the
recording starts.

N/A

genre Assigned by the
terminal

Populated from
EIT/content_des
criptor/content_n
ibble_level_1 for
broadcast
content.

N/A For broadcast content,
populated from
EIT/content_descriptor
/content_nibble_level_
1 when the recording
starts.

N/A

hasRecordi
ng

Assigned by the
terminal

Set if the content
item is already
recorded on
Terminal based
storage.

N/A N/A N/A

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 238 (289)

Property
name

Source Programme
Class

Property

ScheduledReco
rding Class

Property

Recording Class
Property (See

note 1)

Download Class
Property

audioLangu
ages

Assigned by the
terminal

Derived from
language
code(s) present
in
EIT/component
descriptors with
stream_content
value 0x02,
0x04 or 0x06 for
broadcast
content within
scope of
schedule.

N/A Derived from language
code(s) present in
EIT/component
descriptors with
stream_content value
0x02, 0x04 or 0x06 for
broadcast content
within scope of
schedule when the
programme is
recorded..

N/A

subtitleLa
nguages

Assigned by the
terminal

Derived from
language
code(s) present
in
EIT/component
descriptors with
stream_content
value 0x03 for
broadcast
content within
scope of
schedule.

N/A Derived from language
code(s) present in
EIT/component
descriptors with
stream_content value
0x03 for broadcast
content within scope
of schedule when the
programme is
recorded.

N/A

locked Assigned by the
terminal

Set based on
parental control
information

N/A Set based on parental
control information

N/A

isManual Assigned by the
terminal

N/A N/A Set based on how the
recording was
scheduled – see the
descriptions of the
record() and
recordAt() methods
in section 7.10.1.1.

N/A

doNotDelet
e

Assigned by the
application or
the terminal

N/A N/A May be set by the
terminal from a native
UI, or by an
application.

N/A

saveDays Assigned by the
application or
the terminal

N/A N/A May be set by the
terminal from a native
UI, or by an
application.

N/A

saveEpisod
eds

Assigned by the
application or
the terminal

N/A N/A May be set by the
terminal from a native
UI, or by an
application.

N/A

Where there are multiple language versions of a text field derived from DVB-SI tables, the terminal should select one in
accordance with pre-defined user preferences.

8.4.5 Exposing Audio Description streams as AVComponent objects
Section 7.16.5 defines the AVComponent class and the AVAudioComponent class, which defines various properties to
describe the audio stream, and section 8.4.2 provides information on how these properties are populated. This includes an
audioDescription boolean property which is set to true for audio streams that contain an audio commentary for the
people with a visual impairment. Audio description (AD) streams which contain such commentary may be delivered to
the terminal as either broadcast mix or receiver mix (see TS 101 154 [TS 101 154] Annex E for more information on how
this is done for MPEG2-TS streams).

Audio streams without audio description and audio streams with broadcast mix audio description SHALL be exposed to
the application using one AVAudioComponent object per audio stream. Broadcast mix audio description streams
SHALL have the audioDescription property set to true.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 239 (289)

Receiver mix audio description streams have to be mixed in the terminal with a main audio stream. There may be
multiple main audio streams and multiple receiver mix audio descriptions streams. The supported combinations of main
audio stream and receiver mix audio description stream SHALL be determined by the OITF . Each combination SHALL
be exposed to the application as a separate AVAudioComponent object. The properties of this object SHALL be set as
follows:

 audioDescription SHALL be set to true.

 language SHALL be set to the language of the audio description stream.

 audioChannels SHALL be set to the number of audio channels in the combined stream.

 encrypted SHALL be set to true if either constituent stream is encrypted.

 componentTag and pid SHALL be set according to the main audio stream.

 type SHALL be set to COMPONENT_TYPE_AUDIO.

 If the encoding of the constituent streams is the same, then encoding SHALL be set accordingly otherwise it
SHALL be undefined.

Receiver mix audio description streams SHALL NOT be exposed to applications as separate AVAudioComponent
objects.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 240 (289)

9 Capabilities
9.1 Minimum DAE capability requirements
This section defines minimum capabilities which OITF implementations are required to provide to the Declarative
Application Environment and the applications running in that environment.

The following section defines minimum capabilities which SHALL apply to all OITFs.

OITFs MAY support multiple simultaneous applications loaded and running in the browser.

When the CEA-2014 notification framework (see section 5.3.1) is supported, OITFs SHALL support at least 2 DAE
applications being visible at one time, one application showing a notification in the notification window (as defined in
section 5.6.3 of CEA-2014-A) and one in the main browser area. OITFs MAY support more than one DAE application
being visible at one time in the main browser area. On OITFs where only one DAE application is visible at one time in
the main browser area, it is OITF implementation specific how the visible application is changed.

OITFs with an HD output SHALL support 1280x720 graphics on that output when HD video is being decoded or when
no video is being decoded. OITFs MAY support 1920x1080 graphics.

The present document does not define any requirements concerning support for SD graphics.

OITFs SHALL support unrestricted scaling of IP delivered video.

The present document does not define any requirements for scaling of video not delivered via IP, e.g. in hybrid OITFs.

The present document does not define requirements for supporting decoder format conversion.

The present document does not define requirements for pixel depth in the graphics system except that OITFs SHALL
support at least one bit of per-pixel alpha.

The present document does not require the capability to mix audio from memory and audio from a currently decoded
stream.

OITFs SHALL support decoding one stream containing video and audio. They MAY support decoding more than one
stream.

OITFs SHALL support the “Tiresias Screenfont” font or equivalent with the “Generic Application Western European
Character Set” as defined in Annex C of [TS 102 809]. They MAY support other fonts in addition.

OITFs SHALL provide some means for text input. The present document does not specify any particular solution.

The present document does not define requirements for minimum memory sizes for DAE applications or OITF behaviour
when available memory is low. This specification is deliberately silent about the conditions under which the
LowMemory event defined in section 7.2.1.3 is generated.

OITFs SHALL follow [RFC6265] when implementing cookies support.

Since section 6.1 of [RFC6265] does not fix strict limits, this specification fix the following minimum capabilities that
terminals SHALL support:

 At least 4096 bytes per cookie (as measured by the sum of the length of the cookie's name, value, and
attributes).

 At least 20 cookies per domain

 At least 100 cookies total

 At least 5120 bytes for the “Set-Cookie” header

NOTE: as implied by the RFC6265, if a cookie or a "Set-Cookie" header is bigger than the maximum size supported by
the terminal, it will be discarded, not truncated.

The present document does not require control of audio volume to be exposed to the DAE.

The OITF SHALL include a mechanism for the end user to generate the following key events;

 VK_0 – VK_9

 VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT, VK_ENTER ,VK_BACK

 VK_RED, VK_GREEN, VK_YELLOW, VK_BLUE

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 241 (289)

An OITF may also supported a pointer-based interaction paradigm. Terminals that support a free moving cursor SHALL
indicate this using the via the “+POINTER” UI Profile Name Fragment as specified in section 9.2 and hence SHALL
include <pointer>true</pointer> in their XML capabilities as clarified in section B.1.

To provide a good user experience with the widest range of user input devices, DAE applications SHOULD make the
same feature, function or link accessible via physical keys on the remote also accessible through an element in their user
interface which can be navigated to i) by up, down, left and right (e.g. on a remote control with a very restricted number
of buttons) and ii) by a pointer device controlling a free moving cursor on the screen.

If the OITF includes a mechanism to generate the following key events then they SHALL be available to DAE
applications and SHALL be indicated as part of the capability mechanism defined in section 9 of this specification.

 VK_PLAY, VK_PAUSE, VK_STOP, VK_NEXT, VK_PREV

 VK_PLAY_PAUSE

 VK_FAST_FWD

 VK_REWIND

Note: Some remote controls have separate “play” and “pause” keys; others have a single “play/pause” toggle key. For
that reason, in general, it is recommended that applications are written to handle both the VK_PLAY/VK_PAUSE key
codes and the VK_PLAY_PAUSE key code.

The OITF MAY include mechanisms to generate the following key events and if it does, making them available to DAE
applications is OPTIONAL.

 VK_HOME

 VK_MENU

 VK_GUIDE

 VK_TELETEXT

 VK_SUBTITLES

 VK_CHANNEL_UP

 VK_CHANNEL_DOWN

 VK_VOLUME_UP

 VK_VOLUME_DOWN

 VK_MUTE

Where OITFs make other remote control key events available to DAE applications, this SHALL be done as specified by
the capability mechanism defined in section 9 of this specification. Whenever applicable, this SHOULD be done using
the complementary UI profiles defined in section 9.2.

Note that VK_* key codes defined by CEA2014-A Annex F are OPTIONAL for this specification as specified in Annex
B.

9.1.1 SSL/TTLS Requirements
9.1.1.1 SSL/TLS Support
HTTP over TLS as defined in [RFC2818] and [RFC5246] shall be supported for transporting application files over
broadband.

TLS 1.2 ([RFC5246]) should be supported for HTTP over TLS, if not then TLS 1.1 ([RFC4346]) should be supported
instead and if neither of those is supported then TLS 1.0 ([RFC2246]) shall be supported instead.

NOTE: TLS 1.2 provides a much higher security level than TLS 1.0 and 1.1 so manufacturer are recommended to
support it. Note also that TLS 1.0 and 1.1 are obsoleted by the TLS 1.2 specification. It is expected that future versions of
the present document will require support for TLS 1.2 and omit the possibility of only supporting TLS 1.0 or 1.1.

In order to fix a known vulnerability in SSL and TLS renegotiation, an OITF shall support the Renegotiation Indication
Extension as specified in [RFC5746] for all TLS versions.

An OITF SHALL deem a TLS connection to have failed if any of the following conditions apply:

 Certificate chain fails validation as per RFC 5280 [RFC5280] section 6.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 242 (289)

 The host name or IP address contained in the server certificate does not match the host name or IP address
requested. When verifying the host name against the server-supplied certificate, the ‘*’ wildcard and the
subjectAltName extension of type dNSName shall be supported as defined in RFC 2818 [RFC2818].

An OITF SHALL not provide the user with an option to bypass these conditions.

9.1.1.2 Cipher Suites
An OITF SHALL support the following cipher suites for all TLS versions:

 TLS_RSA_WITH_3DES_EDE_CBC_SHA

 TLS_RSA_WITH_AES_128_CBC_SHA

 TLS_RSA_WITH_AES_256_CBC_SHA

 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

An OITF SHALL NOT support ‘anonymous’ cipher suites for TLS connections.

9.1.1.3 Root Certificates
A list of root certificates is maintained at http://www.oipf.tv/root-certificates. The policy by which this list has been
derived is outlined in Annex N.

An OITF SHALL trust all root certificates identified as mandatory and MAY support those certificates identified as
optional on that list, subject to the conditions in this section.

An OITF SHOULD not trust any other root certificates.

Note: Including root certificates that are not on the list increases the risk of a man in the middle attack if those root
certificates have not been audited to a similar or greater level than those on the list.

An OITF SHALL cease to trust any root certificates with RSA keys of less than 2048 bits after 31st December 2013.

An OITF SHALL support a means by which the device manufacturer can remove or distrust root certificates after
manufacture. This MAY be handled either via a firmware upgrade mechanism or preferably via a specific root certificate
update mechanism that could allow more timely updates.

A manufacturer MAY choose to remove or distrust a mandatory root certificate in the OITF in response to a security
threat.

An OITF SHOULD support a means of securely adding new root certificates after manufacture in order to maintain
interoperability with servers over time.

9.2 Default UI profiles
The OITF SHALL support at least one of the UI-related base profiles defined in Table 14.

Table 14: Base UI Profile Names

Base UI Profile Name Default values

"OITF_SDEU_UIPROF" <width>720</width>

<height>576</height>

<colors>high</colors>

<hscroll>false</hscroll>

<vscroll>true</vscroll>

Tiresias with
support for the Unicode character range “Generic Application
Western European Character set” as defined in Annex C of [TS 102
809].

<key>VK_BACK</key>

<colorkeys>true</colorkeys>

<navigationkeys>true</navigationkeys>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 243 (289)

<numerickeys>true</numerickeys>

<pointer>false</pointer>

<security protocolNames="ssl tls">true</security>

<overlay>per-pixel</overlay><!-- whereby at least one level of
partial transparency between graphics and video must be supported
as per the minimum requirements of section 9.1 -->

<overlaylocal>per-pixel</overlaylocal><!-- whereby at least one
level of partial transparency between graphics and video must be
supported as per the minimum requirements of section 9.1 -->

<overlaylocaltuner>per-pixel</overlaylocaltuner><!-- whereby at
least one level of partial transparency between graphics and video
must be supported as per the minimum requirements of section 9.1
-->

<overlayIPbroadcast>per-pixel</overlayIPBroadcast><!-- whereby
at least one level of partial transparency between graphics and
video must be supported as per the minimum requirements of
section 9.1 -->

<notificationscripts>false</notificationscripts>
<save-restore>false</save-restore>

"OITF_SD60_UIPROF" Same as OITF_SDEU_UIPROF, with the following modifications:

<width>720</width>
<height>480</height>

"OITF_SDUS_UIPROF" Same as OITF_SDEU_UIPROF, with the following modifications:

<width>640</width>
<height>480</height>

"OITF_HD_UIPROF" Same as OITF_SDEU_UIPROF, with the following modifications:

<width>1280</width>
<height>720</height>
<colors>high</colors>
Tiresias Screenfont
with support for the Unicode character range “Generic Application
Western European Character Set” as defined in Annex C of [TS 102
809].

"OITF_FULL_HD_UIPROF" Same as OITF_HD_UIPROF, with the following modifications:

<width>1920</width>
<height>1080</height>

In order to capture the heterogeneity of the features supported by OITF devices, this specification also defines a set of
complementary UI Profile name fragments, each constituting a particular logical subset of capabilities, for which a OITF
can indicate support by appending the UI Profile name fragment to the name of the supported base UI profile as defined
in Table 14. Both the OITF and server SHALL support the concatenation of a series of UI profile name fragments in any
order.

Table 15: Complementary UI Profile Name Fragments

UI Profile Name Fragment Default values

"+TRICKMODE" <key>VK_PLAY</key><key>VK_PAUSE</key> and/or

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 244 (289)

<key>VK_PLAY_PAUSE</key> (*)

<key>VK_STOP</key>

<key>VK_REWIND</key>

<key>VK_FAST_FWD</key>

(*) The +TRICKMODE profile fragment identifier does not distinguish
between remote controls having separate “play” and “pause” keys; and remote
controls having a single “play/pause” toggle key. For that reason, in general,
it is recommended that applications are written to handle both the
VK_PLAY/VK_PAUSE key codes and the VK_PLAY_PAUSE key code

"+AVCAD" <video_profile type="application/vnd.oipf.ContentAccessStreaming+xml"/>

"+DL" <download protocolNames="http">true</download>

"+IPTV_SDS" <video_broadcast type=”ID_IPTV_SDS”
scaling=”arbitrary”>true</video_broadcast>

"+IPTV_URI" <video_broadcast type=”ID_IPTV_URI”
scaling=”arbitrary”>true</video_broadcast>

"+ANA" <video_broadcast type=”ID_ANALOG”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_C" <video_broadcast type=”ID_DVB_C ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_T" <video_broadcast type=”ID_DVB_T ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_S" <video_broadcast type=”ID_DVB_S ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_C2" <video_broadcast type=”ID_DVB_C2 ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_T2" <video_broadcast type=”ID_DVB_T2 ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_S2" <video_broadcast type=”ID_DVB_S2 ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+ISDB_C" <video_broadcast type=”ID_ISDB_C”
scaling=”quarterscreen”>true</video_broadcast>

"+ISDB_T" <video_broadcast type=”ID_ISDB_T”
scaling=”quarterscreen”>true</video_broadcast>

"+ISDB_S" <video_broadcast type=”ID_ISDB_S”
scaling=”quarterscreen”>true</video_broadcast>

"+META_BCG” <clientMetadata type=”bcg”>true</clientMetadata >

"+META_EIT” <clientMetadata type=”eit-pf”>true</clientMetadata >

“+META_SI” <clientMetadata type=”dvb-si”>true</clientMetadata >

"+ITV_KEYS" <key>VK_HOME</key>

<key>VK_MENU</key>

<key>VK_CANCEL</key>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 245 (289)

<key>VK_SUBTITLES</key>

"+CONTROLLED" <key>VK_CHANNEL_UP</key>

<key>VK_CHANNEL_DOWN</key>

<key>VK_VOLUME_UP</key>

<key>VK_VOLUME_DOWN</key>

<key>VK_MUTE</key>

<configurationChanges>true</configurationChanges>

<extendedAVControl>true</extendedAVControl>

When relevant (i.e. when coupled with +DL, resp +PVR):

<download manageDownloads="sameDomain">true</download>

<recording manageRecordings="sameDomain">true</ recording >

<remote_diagnostics>true</remote_diagnostics>

”+PVR” <key>VK_RECORD</key>

<recording>true</recording>

"+DRM" <drm DRMSystemID="urn:dvb:casystemid:19188">TS_BBTS TTS_BBTS
MP4_PDCF</drm>

“+CommunicationServices” <comunicationServices>true</communicationServices>

“+SVG” <mime-extensions>image/svg+xml</mime-extensions>

“+POINTER” <pointer>true</pointer>

“+POLLNOTIF” <pollingNotifications>true</pollingNotifications>

Whenever an OITF supports an extension to the capabilities that can be defined using a combination of a base UI Profiles
and a (number of) UI Profile fragment(s), it SHALL advertise this extension using the mechanism as defined in section
8.1.

9.3 CEA-2014 capability negotiation and extensions
This section contains extensions and modifications to the CEA-2014 [CEA2014A] capability negotiation mechanism.
The XML format that is used to describe the capabilities forms the basis for the profile definitions and profile fragments
as defined in section 9.2, and is also the format that is used by the “xmlCapabilities” property of the
application/oipfCapabilities object.

The schema with the extensions and modifications to the capability description as defined in this section can be found in
Annex F. The schema in Annex F SHALL be used instead of the existing capability description schema as defined in
Annex C of CEA-2014 [CEA2014A].

The conveyance of the OITF capability description through the User-Agent header is described in section 8.1.

Examples of valid OITF capability profiles are (using the full XML syntax as defined in Annex F):

A pure HD-capable IPTV OITF, which supports live DVB-IP TV via SD&S, streamed mpeg at SD and HD formats, the
MPAA parental rating scheme, trickplay, and access to an embedded BCG metadata client:

<profilelist>
 <ui_profile
 name="OITF_HD_UIPROF+IPTV_SDS+AVCAD+META_BCG+TRICKMODE+ITV_KEYS+CONTROLLED+DRM">

 <ext>
 <parentalcontrol schemes="urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001"> true
 </parentalcontrol>
 </ext>
 </ui_profile>

 <video_profile name="TS_AVC_SD_25_HEAAC" type="video/mpeg"

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 246 (289)

 transport="http-get rtsp-rtp-udp"
 DRMSystemID="urn:dvb:casystemid:19188"/>

 <video_profile name="TS_AVC_HD_25_HEAAC" type="video/mpeg"
 transport="http-get rtsp-rtp-udp"
 DRMSystemID="urn:dvb:casystemid:19188"/>
</profilelist>

A hybrid HD-capable box, supporting live DVB broadcasts over satellite, PVR functionality, and (Marlin-protected and
unprotected) VoD in progressive download:

<profilelist>
 <ui_profile
 name="OITF_HD_UIPROF+AVCAD+TRICKMODE+ITV_KEYS+CONTROLLED+DRM+DVB_S+META_SI+PVR">
 </ui_profile>

 <video_profile name="TS_AVC_SD_25_HEAAC" type="video/mpeg"
 transport="http-get rtsp-rtp-udp"
 DRMSystemID="urn:dvb:casystemid:19188"/>

 <video_profile name="TS_AVC_HD_25_HEAAC" type="video/mpeg"
 transport="http-get rtsp-rtp-udp"
 DRMSystemID="urn:dvb:casystemid:19188"/>
</profilelist>

A hybrid device providing access to its ATSC terrestrial tuner (supporting two different parental rating schemes), DVB-
IPTV ‘tuner’, and PVR functionality to DAE applications, but not exposing ‘trickmode’ or ‘controlled’ key events to
DAE applications running in the browser:

<profilelist>
 <ui_profile name="OITF_HD_UIPROF+PVR+IPTV_SDS">
 <ext>
 <video_broadcast type="ID_ATSC_T" scaling="arbitrary">true</video_broadcast>

 <parentalcontrol schemes="urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001
 urn:mpeg:mpeg7:cs:MPAAParentalRatingTVCS:2001">
 true </parentalcontrol>
 </ext>
 </ui_profile>
</profilelist>

9.3.1 Tuner/broadcast capability indication
If an OITF supports control over its local tuner functionality by a server, an OITF SHALL indicate this through the base
profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the schema defined in
Annex F. To this end the following new elements SHALL be supported for a capability description or capability profile
(see Annex F for more information):

<video_broadcast> - indicates whether or not the OITF supports the video/broadcast object to enable control of its local
tuner functionality by a server (i.e. retrieving the tuner’s channel line up, switching channels of the tuner, and rendering
the output of the broadcasted content inside the browser). The <video_broadcast> element has six attributes:

 Attribute type specifies the type(s) of tuner(s) for which the OITF allows tuner control, by using a space-
separated list of idType values as specified in section 7.13.11.1 for the Channel object (i.e. “ID_ANALOG”,
“ID_DVB_C”, etc.).

 Attribute transport specifies a space-separated list of supported (transport) protocols in case of IP Broadcasts
(i.e. if the type attribute contains one of the ID_IPTV_* idType values as specified in section 7.13.11.1). This is
done by using one or more of the (transport) protocol names as defined in Annex F of the [Protocols
specification].

 Attribute scaling specifies the method of video scaling the OITF supports for the tuner output (i.e. “arbitrary”,
“quartersize”, “0.33x0.33” or “none”), with default value “arbitrary” if omitted.

 Attribute minSize specifies the minimal size, as a percentage of the full extent of the OITF’s display, to which
the OITF supports scaling of video content received over the (logical or physical) tuner if attribute scaling has
value “arbitrary”. The value “0” for the minSize attribute indicates support for arbitrary and unrestricted scaling
of the video. The value of the attribute minSize SHALL be silently ignored if the value of the attribute scaling is
not “arbitrary”.

 Attribute nrstreams provides an indication of the number of video streams that can be rendered simultaneously
by the indicated tuner functionality (typically limited by the number of tuners supported by the device), with a
default value of “1” if omitted.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 247 (289)

 Attribute postList specifies, if included in the client’s capability description, whether or not the OITF supports
the HTTP POST method defined in section 4.8.1.2. If included in the server’s capability description, postList
specifies whether or not the server supports using the channel list information sent through the HTTP POST
method to exercise tuner control. If an OITF does not post the channel list information, a server SHALL,
irrespective of the value it specified for the postList attribute in its server capability description, rely on the
getChannelConfig method defined in section 7.13.1.3 to access the channel list information.

The <video_broadcast> element is defined using the following XML Schema fragment. Multiple
<video_broadcast> elements may be specified to distinguish between tuners with different behaviour or
capabilities, for example with respect to scaling:

<xs:element name="video_broadcast" type="videoBroadcastType" minOccurs="0"
 maxOccurs="unbounded"/>
<xs:complexType name="videoBroadcastType">
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="transport" type="xs:string"/>
 <xs:attribute name="nrstreams" type="xs:unsignedInt" default="1"/>
 <xs:attribute name="scaling" type="scalingType" default="arbitrary"/>
 <xs:attribute name="minSize" type="xs:unsignedInt" default="0"/>
 <xs:attribute name="postList" type="xs:boolean" default="false"/>
</xs:complexType>

 <overlaylocaltuner> - indicates whether or not the OITF supports overlays for video broadcasts received
through the local tuner, i.e. allows XHTML content to be rendered on top of video content broadcasted over
local tuner. If included, the value of this element SHALL be: (none|on-off|global|per-pixel), whereby the same
requirements as defined for element <overlay> in [Req. 5.2.1.a] of CEA-2014-A SHALL apply.

NOTE: As defined by [Req. 5.2.1.e] of CEA-2014-A also a server MAY use these elements in the server capability
description, if a server requires control of the tuner functionality of an OITF for the correct rendering of its service.

9.3.2 Broadcasted content over IP capability indication
If an OITF supports functionality for rendering the output of the broadcasted content received over IP inside the browser
and optionally providing an IPTV related channel line-up and favourite list to the server, an OITF SHALL indicate this
through the base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the
schema defined in Annex F. This SHALL be done using the same <video_broadcast> element as defined in section 9.3.1,
whereby the type attribute contains one of the ID_IPTV_* idType values as specified in section 7.13.11.1:

 <video_broadcast> - indicates whether or not the OITF supports the video/broadcast object to enable control
rendering the output of the broadcasted content received over IP inside the browser and optionally providing an
IPTV related channel line-up and favourite list to the server.

To indicate support for overlays over IP broadcasts the following element SHALL be used (see Annex F for more
information):

 <overlayIPbroadcast> - indicates whether or not the OITF supports overlays for IP video broadcasts, i.e.
allows XHTML content to be rendered on top of video content broadcasted over IP. If included, the value of this
element SHALL be: (none|on-off|global|per-pixel), whereby the same requirements as defined for element
<overlay> in [Req. 5.2.1.a] of CEA-2014-A SHALL apply.

9.3.3 PVR capability indication
Support for the control of recording functionality that is available to the OITF by a server SHALL be indicated through
the base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the <recording>
element defined in Annex F. This specification defines the following element that can be added to a capability
description:

<recording>: indicates whether or not the OITF supports control of its local recording (i.e. PVR) functionality by a
server. If included, the value of this element SHALL be (true|false). The boolean attribute ipBroadcast specifies whether
or not the OITF also supports recording of A/V content broadcasted over IP, and the Boolean attribute postList specifies
whether or not the OITF supports the HTTP POST method defined in section 4.8.2, respectively whether or not the
server uses the posted channel list information, if conveyed by the OITF, to control the recording functionality available
to the OITF. If an OITF does not post the channel list information, a server SHALL, irrespective of the value it specified
for the postList attribute, rely on the getChannelConfig() method defined in section 7.10.1.1 to access the channel

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 248 (289)

list information. The Boolean attribute manageRecordings specifies whether or not the OITF supports managing
recordings through the JavaScript APIs defined in section 7.10.4.

The <recording> element is defined using the following XML Schema fragment (see Annex F for more information):

<xs:element name="recording" type="pvrType"/>
<xs:complexType name="pvrType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="ipBroadcast" type="xs:boolean" default="false"/>
 <xs:attribute name="manageRecordings" type="manageRecordingsType"
 default="none"/>
 <xs:attribute name="postList" type="xs:boolean" default="false"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
<xs:simpleType name="manageRecordingsType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="initiator"/>
 <xs:enumeration value="samedomain"/>
 <xs:enumeration value="all"/>
 </xs:restriction>
</xs:simpleType>

If the manageRecordings attribute is present, this attribute SHALL take one of the following values:

 “none”: indicates that the client does not support managing recordings .

 “initiator”: indicates that recordings initiated by the current application may be managed.

 “samedomain”: indicates that recordings initiated by applications from the same fully-qualified domain may be
managed.

 “all”: indicates that recordings initiated both by the current application and other applications may be managed.

If not present, a value of “none” SHALL be assumed.

9.3.4 Download CoD capability indication
If a client supports downloading content to a client (with or without DRM protection), the client SHALL indicate this
through the base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the
schema defined in Annex F. The <download> element SHALL adhere to the definition of bullet o) of [Req. 5.2.1.a] of
CEA-2014-A.

A client MAY include an informative list of MIME types it supports for playback after download through the <mime-
extensions> element. Note that since content download may be separated from content playback, a server SHOULD not
rely on this information to be present.

If a client supports managing downloads through the JavaScript content download API specified in section 7.4.3 then the
client SHALL indicate this using the attribute manageDownloads. This attribute has the following definition (see Annex
F for more information):

<xs:attribute name="manageDownloads" type="manageDownloadsType" default="none"/>

If present, this attribute SHALL take one of the following values:

 “none”: indicates that the client does not support managing downloads.

 “initiator”: indicates that downloads initiated by the current application may be managed.

 “samedomain”: indicates that downloads initiated by applications from the same fully-qualified domain may be
managed.

 “all”: indicates that downloads initiated both by the current application and other applications may be managed.

If not present, a value of “none” SHALL be assumed.

Example:
<download protocolNames="http ftp" manageDownloads="all" > true </download>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 249 (289)

9.3.5 Parental ratings
If an OITF supports a parental control system, the OITF SHALL indicate this by using the value “true” for element
<parentalcontrol> in the OITF capability profile/description, and define a space separated list of names of parental rating
schemes using the “schemes” attribute.

The schema of the <parentalcontrol> element is defined as follows (see Annex F for more information):
<xs:element name="parentalcontrol" type="parentalControlType"/>
<xs:complexType name="parentalControlType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name=”schemes” type=”xs:string”/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

For which the following semantics SHALL apply:

<parentalcontrol> - indicates whether or not the OITF supports a client controlled parental control system. If included
in the OITF capability description, the value of this element SHALL be: (true|false). The <parentalcontrol> element has
the following attributes:

 attribute “schemes”: SHALL be a non-empty space separated list of case-insensitive names of parental rating
schemes registered with the platform (either by the manufacturer, or by applications where the rating scheme is
associated with a recording), if the value of the <parentalcontrol> element is true. Valid rating schemes names
include the ParentalRating classification scheme names as defined by property “scheme” of the
ParentalRating object as defined in section 7.9.4.

Example:
<parentalcontrol schemes="dvb-si urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001">
 true
</parentalcontrol>

9.3.6 Extended A/V API support
The OITF SHALL indicate support for the extended A/V control APIs defined in section 7.13.7 through the base profile
and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the <extendedAVControl>
element defined in Annex F:

<xs:element name="extendedAVControl" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.7 OITF Metadata API support
The OITF SHALL indicate support for client-side metadata processing and the APIs defined in section 7.12 through the
base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the
<clientMetadata> element defined in Annex F:

<xs:element name="clientMetadata" type="metadataType"/>
<xs:complexType name="metadataType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="type" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

This element has the following semantics:

<clientMetadata> - indicates whether or not the OITF supports a client-side metadata processing. If included in the RUI
Client capability description, the value of this element SHALL be: (true|false).

The <clientMetadata> element has the following attributes:

 attribute “type” SHALL include a non-empty space separated list of names of supported metadata
systems/protocols, if the value of the <clientmetadata> element is true.

Below is an extensible list of case insensitive metadata system/protocol names which MAY be used for this
attribute:

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 250 (289)

• “bcg”: indicates support for the TV-Anytime Broadband Content Guide metadata format.

• “sd-s”: indicates support for the DVB SD&S metadata format.

• “dvb-si”: indicates support for the DVB-SI metadata format.

• “eit-pf”: indicates support for EIT present/following information as defined for DVB-SI in section 4.1.3
of [META]

9.3.8 OITF Configuration API support
The OITF SHALL indicate support for modification of OITF configuration and settings by applications (via the APIs
defined in section 7.3) through the base profile and UI profile name fragment strings as defined in section 9.2 “Default UI
Profiles” and the <configurationChanges> element defined in Annex F:

<xs:element name="configurationChanges" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.9 Communication Services API Support
The OITF SHALL indicate support for Communication Services API (via the APIs defined in section 7.8) through the
base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the
<communicationServices> element defined in Annex F:

<xs:element name="communicationServices" type="xs:boolean"/>

<xs:element name="presenceMessaging" type="xs:boolean"/>

If included, the value of these elements SHALL be: (true|false).

9.3.10 DRM capability indication
The OITF SHALL indicate support for handling DRM-protected content through the base profile and UI profile name
fragment strings as defined in section 9.2 “Default UI Profiles” and the <drm> element defined in Annex F:

<xs:element name="drm" type="drmType" minOccurs="0" maxOccurs="unbounded"/>
<xs:complexType name="drmType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="DRMSystemID" type="xs:string" use="required"/>
 <xs:attribute name="protectionGateways" type="xs:string" default=""/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

And with the following semantics:

<drm> - indicates whether or not the client supports a DRM content protection system for downloading and streaming
content. If included in the RUI Client capability description, the value of this element SHALL be a space separated list of
zero or more case-insensitive names of supported file and/or container formats for protected content by the DRM system
indicated by the "DRMSystemID" attribute, such as the OMA DRM Content Format (DCF). Valid values include: a
system layer format name of the first column of Table 3 of [MEDIA], and a protection format of the second column of
Table 3 of [MEDIA], concatenated with an underscore ‘_’. In case of the Gateway centric approach defined by [CSP],
this value indicates the system layer and protection formats which are supported by the combination of OITF and CSP
Gateway.

The <drm> element has the following attributes:

- attribute “DRMSystemID” SHALL include a supported DRM system. Valid values for the "DRMSystemID" include
the values as defined by element DRMSystemID in Table 6 of [META]. For example, for Marlin, the DRMSystemID
value is “urn:dvb:casystemid:19188”. In case of the Gateway centric approach defined by [CSP], this DRMsystemID
attribute indicates the DRM System(s) of UNIS-CSP-G which is supported by the combination of OITF and CSP
Gateway.

- attribute “protectionGateways” SHALL include a space separated list of zero or more case-insensitive names of
supported CSP Gateway types that are capable of supporting the DRM system indicated by attribute “DRMSystemID”.
This attribute is conditional mandatory and SHALL be specified in the case that the DRM System indicated by the

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 251 (289)

“DRMSystemID” attribute is supported by the CSP Gateway. Valid values for the scheme for the Gateway centric
approach defined by [CSP] are “dtcp-ip” and “ci+”.

Examples:
<drm DRMSystemID="urn:dvb:casystemid:19188" >TS_BBTS TTS_BBTS MP4_PDCF</drm>
<drm DRMSystemID="urn:dvb:casystemid:12348" protectionGateways="ci+">TS_PF TTS_PF</drm>
<drm DRMSystemID="urn:dvb:casystemid:12348" protectionGateways="dtcp-ip">TS_PF</drm>

9.3.11 Media profile capability indication
If an OITF supports streaming A/V content to the client, the client SHALL indicate this by including a non-empty list of
<audio_profile> and/or <video_profile> elements in the RUI client capability description. The <audio_profile> and
<video_profile> elements SHALL adhere to the following requirements in addition to what has been defined by bullet v)
and w) of [Req. 5.2.1.a] of CEA-2014-A:

 Valid values for the “type”-attribute of the <audio_profile> and <video_profile> elements include the MIME
types given in section 3 of [MEDIA].

 Valid values for the “name”-attribute include:

o for <video_profile> elements: the system format name, the video format name and the audio format
name for A/V contents, concatenated with an underscore ‘_’, as defined in section 3 of [MEDIA].

o for <audio_profile> elements: the audio format name for pure audio contents in Table 4 of
[MEDIA]

o for both <video_profile>, and <audio_profile> elements, it is allowed to include multiple profile
names corresponding to the same MIME type, by separating each profile name with a whitespace
character.

 Valid values for the “transport”-attribute include (a space-separated list of) the protocol names as defined in the
column “Name for <protocol>” in Annex F.1 of [PROT], whereby the value “http” as specified as default value
for the “transport”-attribute in CEA-2014-A SHALL correspond to value “http-get”.

 The <video_profile> and <audio_profile> elements SHALL support a new attribute called “DRMSystemID”,
which SHALL include a space separated list of zero or more DRM system IDs supported for the media
profile(s), whereby the DRMSystemID SHALL correspond to a <drm> element (as defined in section 9.3.10.
about DRM capability indication) with the same value for attribute “DRMSystemID”. In the case the attribute
“DRMsystemID” is specified, non-protected A/V contents of the media profile(s) SHALL be also supported.
For non protected media profile(s), this attribute MAY be omitted (see Annex F for more information).

 Next to providing the list of supported audio and video profiles, the client SHALL include an <audio_profile>
element and/or a <video_profile> element with the value “application/vnd.oipf.ContentAccessStreaming+xml”
for attribute “type”, to indicate support for the content access description document format as defined in 4.7.1 as
value for the “data” attribute of the A/V object as defined by [CEA2014A] to initiate the streaming of content.

Examples:
<video_profile type="application/vnd.oipf.ContentAccessStreaming+xml"/>

<video_profile
 name="TS_MPEG2_SD_25_AC3 TS_AVC_HD_25_HEAAC"
 type="video/mpeg"
 DRMSystemID=”urn:dvb:casystemid:19188”
 transport=”rtsp-rtp-udp”/>

<video_profile
 name="MP4_MPEG2_SD_25_AC3 MP4_AVC_HD_25_HEAAC"
 type="video/mp4"
 transport=”http-get”/>

<video_profile
 name="TS_AVC_HD_25_HEAAC"
 type=”application/x-dtcp1”
 DRMSystemID=”urn:dvb:casystemid:12348"
 transport=”http-get”/>

<audio_profile name="MPEG1_L3" type="audio/mpeg" transport=”http-get”/>

9.3.12 Remote diagnostics support
The OITF SHALL indicate support for remote diagnostics (via the APIs defined in section 7.11) using the following
element in the OITF’s capability description (see Annex F for more information):

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 252 (289)

<xs:element name="remote_diagnostics" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.13 SVG
The OITF SHALL indicate support for SVG through the base profile and UI profile name fragment strings as defined in
section 9.2 or as defined in section 6.4 using the Remote UI Client Capability Description defined for SVG in that section
- image/svg+xml.

9.3.14 Third party notification support
If an OITF supports the 3rd party polling mechanism as defined in section 5.6.2 of [CEA2014A], including the
extensions to 5.6.2 as defined in Annex B, through the base profile and UI profile name fragment strings as defined in
section 9.2 “Default UI Profiles” and the <pollingNotifications> element defined in Annex F:

<xs:element name="pollingNotifications" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.15 Multicast Delivery Terminating Function support
The OITF SHALL indicate support for the multicast delivery terminating function (via the APIs defined in section
7.15.1) using the following element in the OITF’s capability description (see Annex F for more information):

<xs:element name="mdtf" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.16 Other capability extensions
The following extensions to the capability profile elements defined in [Req. 5.2.1.a] of CEA-2014-A SHALL be
supported:

d. an additional value “0.33x0.33” for attribute “scaling” of the <video_profile> element in bullet w) of [Req.
5.2.1.a], with the following related extension to the schema for type “scalingType” (see Annex F for more
information):
<xs:enumeration value="0.33x0.33"/>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 253 (289)

10 Security
10.1 Application / Service Security
This section defines the security model that applies to the privileged functionality exposed by an OITF to a server device.
The main purpose of the security model is to protect local client side functionality exposed by an OITF to JavaScript
from unauthorized use. For example in the case of PVR control API, untrusted servers should be prevented from
scheduling recordings.

The security model is quite generic, in a sense that it is not limited to particular privileged browser extensions, but can be
applied to any local client side functionality exposed to any kind of networked application.

10.1.1 OITF requirements
The following requirements SHALL apply to OITFs that expose security and/or privacy sensitive (i.e. privileged)
functionality in one or more of the cases described in section 10.1.3.

 An OITF SHALL prevent a HTML document from a server from accessing the exposed security and/or privacy
sensitive functionality, unless the server can be correctly authenticated (see below), and the server is granted the
necessary privileges to access the security and/or privacy sensitive functionality.

 The OITF SHALL authenticate the server during a TLS handshake through a valid X.509v3 certificate, that is
granted by a certificate authority that is trusted by the OITF. To this end, the OITF SHALL match the hostname
or (sub)domainname of the HTML document’s URI with the hostname or (sub)domainname as specified in the
X.509v3 certificate, in the manner as defined in section 3.1 of RFC 2818 [RFC2818].

 The OITF SHALL support the Online Certificate Status Protocol (OCSP), at least the Lightweight Profile as
defined in RFC 5019, to determine the current validity of the X.509v3 certificate before access to privileged
functionality is granted.

 The OITF MAY support a private certificate extension for X.509v3 certificates called “permissions” that
specifies a set of permissions requested by a server to access privileged functionality, through zero or more
permission names associated with privileges. The OITF MAY grant an authenticated server the set of
permissions, which are each associated with the right to access a specific set of privileged functionality.
Allowed permissions names include the permission names as defined in section 10.1.4.

 The set of permissions granted to an authenticated server by an OITF MAY depend on the occurrence of that
server on a whitelist or blacklist available to the OITF.

 NOTE: Management of whitelists and blacklists available to an OITF is out of scope of this document.

 If the server does not have the necessary privileges to access a property, method or object, or the server cannot
be properly authenticated, the OITF SHALL throw an error with the name property set to the value
"SecurityError". The example below shows how this can be used by applications:
try {
 object.foo()
} catch(e)
{
 if (e.name == "SecurityError") {
 // I am not authorised to do this
 }
}

 The OITF MAY inform the user of the decision to deny a server requested access to privileged functionality and
MAY offer the user the option to override this decision.

10.1.2 Server requirements
The following requirements SHALL apply to servers that wish to access security and/or privacy sensitive (i.e. privileged)
functionality exposed by an OITF, in one or more of the cases defined in section 10.1.3:

 A server SHALL specify the use of TLS for each HTML document that accesses privileged functionality (i.e. by
using the “https://” URI scheme for the URL of the HTML document).

 A server SHALL expose a valid X.509v3 certificate during the TLS certificate handshake.

 A server MAY request an OITF for certain permissions to access privileged functionality through a private
certificate extension. If a server wants to do so, the server MAY include a private certificate extension called
“permissions” as part of a valid X.509v3 certificate. If included, the “permissions” extension specifies a set of
permissions through zero or more permission names. Allowed permissions names include the permission names
as defined in section 10.1.4.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 254 (289)

10.1.3 Specific security requirements for privileged JavaScript APIs
This section defines the specific security requirements for specific privileged JavaScript APIs, such as the
tuner/broadcast, recording, content download and DRM related APIs as defined in sections 7.13, 7.10, 7.4 and 7.6 in
addition to the security requirements defined in sections 10.1.1 and 10.1.2.

10.1.3.1 Security requirements for tuner control and lineup
Exposure of the channel line up and the video/broadcast APIs for controlling the (local) tuner as specified in section 7.13
SHALL adhere to the security requirements in sections 10.1.3.1.1 and 10.1.3.1.2.

10.1.3.1.1 Security requirements for exposure of the tuner channel lineup
Exposure of the channel line up of the (local) tuner as specified in section 7.13 SHALL adhere to the following security
requirements:

the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server has the necessary privileges
to obtain the channel lineup of the (local) tuner. If the server does not have the necessary privileges, or the server cannot
be properly authenticated, the OITF SHALL:

not convey the Client Channel Listing to the server through a HTTP POST.

not expose the Client Channel Listing to the DAE application through the getChannelConfig() method of the
video/broadcast object. Attempts to access this method SHALL throw an error as defined in section 10.1.1.

10.1.3.1.2 Security requirements for tuner control
Control of the (local) tuner as specified in section 7.13 SHALL adhere to the following security requirements:

 the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server has the necessary
privileges to control the (local) tuner. If the server does not have the necessary privileges or the server cannot be
properly authenticated, the OITF SHALL deny requests to switch a local tuner to another channel by throwing
an error as defined in section 10.1.1.

10.1.3.2 Security requirements for recording
The recording functionality as specified in section 7.10 SHALL adhere to the following security requirements:

- Recording of broadcasted content: the OITF SHALL perform a security check (as defined by section 10.1.1) to see if
the server has the necessary privileges to schedule recordings of broadcasts. If the server does not have the necessary
privileges or the server cannot be properly authenticated, the OITF SHALL deny a server’s request to access the
functionality of the application/oipfRecordingScheduler object (as defined by section 7.10.1), and SHALL
also not expose the Client Channel Listing, neither through the HTTP POST, nor through the getChannelConfig()
method. Furthermore, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from the
server attempts to access any properties or methods on the application/oipfRecordingScheduler object.

- Recording of current A/V content broadcasted: the OITF SHALL perform a security check (as defined by section
10.1.1) to see if the server has the necessary privileges to record the current broadcast (as defined in section 7.13.2). If the
server does not have the necessary privileges or the server cannot be properly authenticated, the OITF SHALL deny a
server’s request to start a recording of the broadcast currently rendered by the video/broadcast object by throwing
an error as defined in section 10.1.1.

- Control over and exposure of scheduled recordings: the OITF SHALL restrict the visibility and control over scheduled
recordings to those scheduled recordings that were initiated through a server from the same FQDN that scheduled the
recordings.

10.1.3.3 Security requirements for content download functionality
The content download functionality as defined in section 7.4 SHALL adhere to the following security requirements:

- Initiating a download: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server has
the necessary privileges to initiate a download. If the server does not have the necessary privileges or the server cannot be
properly authenticated, the OITF SHALL NOT start downloading the content after receiving a content-access description
document as defined in section 4.6.2.

NOTE 1: The server is the server that served the HTML document or third-party notification that includes a link to a
content-access description document. This is not necessarily the same server from which the content is downloaded.

NOTE 2: The URL from which a content item is downloaded (i.e. as specified by a <ContentURL> element in the
content-access description document) does not have to be protected by TLS.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 255 (289)

10.1.3.4 Security requirements for DRM related functionality
The DRM control functionality (i.e. the application/oipfDrmAgent embedded object) as defined in section 7.6
SHALL adhere to the following security requirements:

- Accessing the DRM agent: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server
has the necessary privileges to interact with the DRM agent, i.e. by accessing the DRM agent embedded object as
specified in section 7.6.1. If the server does not have the necessary privileges, or the server cannot be properly
authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from that server
attempts to access any of its properties or methods on the DRM agent embedded object.

10.1.3.5 Security requirements for IMS functionality
The IMS functionality (i.e. the application/oipfCommunicationServices embedded object) as defined in
section 7.8 SHALL adhere to the following security requirements:

- Accessing the IMS embedded object: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if
the server has the necessary privileges to interact with the IMS functionality, i.e. by accessing the IMS embedded object
as specified in section 7.8. If the server does not have the necessary privileges, or the server cannot be properly
authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from that server
attempts to access any of the classes, properties or methods defined in section 7.8.

10.1.3.6 Security requirements for metadata processing functionality
The metadata processing functionality (i.e. the application/oipfSearchManager embedded object and other
APIs) as defined in section 7.12 and 7.13.3 SHALL adhere to the following security requirements:

- Accessing the search manager: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the
server has the necessary privileges to interact with the search manager, i.e. by accessing the
application/oipfSearchManager embedded object as specified in section 7.12.1. If the server does not have the
necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as defined in
section 10.1.1 when an application loaded from that server attempts to access any of the properties or methods on the
SearchManager embedded object.

- Accessing enhanced metadata: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the
server has the necessary privileges to access the extensions to video/broadcast for accessing EIT p/f information
specified in section 7.13.3, in order to prevent misuse of the EIT p/f information If the server does not have the necessary
privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as defined in section 10.1.1
when an application loaded from that server attempts to access to the programmes property of the video/broadcast
object specified in section 7.13.3.

10.1.3.7 Security requirements for configuration and settings functionality
The configuration and settings functionality (i.e. the application/oipfConfiguration embedded object and other
APIs) as defined in section 7.3 SHALL adhere to the following security requirements:

- Reading and modifying configuration and/or settings: the OITF SHALL perform a security check (as defined in section
10.1.1) to see if the server has the necessary privileges to interact with the configuration functionality, i.e. by accessing
the configuration embedded object as specified in section 7.3.1. If the server does not have the necessary privileges, or
the server cannot be properly authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an
application loaded from that server attempts to access any of the classes, properties or methods defined in section 7.3.

10.1.3.8 Security requirements for APIs for OITFs under the control of a service
provider

APIs for OITFs under the control of a service provider SHALL adhere to the following security requirements:

- Accessing the extended tuner control APIs: the OITF SHALL perform a security check (as defined in section 10.1.1) to
see if the server has the necessary privileges to interact with the extended tuner control APIs as specified in section
7.13.7. If the server does not have the necessary privileges or the server cannot be properly authenticated, the OITF
SHALL throw an error as defined in section 10.1.1 when an application loaded from that server attempts to access any of
the classes, properties or methods defined in section 7.13.7.

- Accessing the extended PVR APIs: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if
the server has the necessary privileges to interact with the extended PVR APIs as specified in section 7.10.4. If the server
does not have the necessary privileges or the server cannot be properly authenticated, the OITF SHALL throw an error as
defined in section 10.1.1 when an application loaded from that server attempts to access any of the classes, properties or
methods defined in section 7.10.4.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 256 (289)

- Accessing the download manager: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the
server has the necessary privileges to interact with the download manager, i.e. by accessing the
application/oipfDownloadManager embedded object as specified in section 7.4.3. If the server does not have the
necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as defined in
section 10.1.1 when an application loaded from that server attempts to access any of the classes, properties or methods
specified in section 7.4.3.

- Accessing all downloads: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server
has the necessary privileges to manage downloads not initiated by the current application, i.e. by accessing the downloads
property of the application/oipfDownloadManager embedded object as specified in section 7.4.3. If the server
does not have the necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error
as defined in section 10.1.1 when an application loaded from that server attempts to access this property.

10.1.3.9 Security requirements for remote diagnostics and management API
The remote diagnostics and management API (i.e. application/oipfRemoteManagement) as defined in section
7.11.1) SHALL adhere to the following security requirements:

- Accessing remote diagnostics and management parameters and/or settings: the OITF SHALL perform a security check
(as defined in section 10.1.1) to see if the server has the necessary privileges to interact with the remote diagnostics and
management functionality, i.e. by accessing the application/oipfRemoteManagement embedded object as
specified in section 7.11.1. If the server does not have the necessary privileges, or the server cannot be properly
authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from that server
attempts to access any of the classes, properties or methods defined in section 7.11.1.

10.1.3.10 Security requirements for parental control manager
The parental control manager API (i.e. application/oipfParentalControlManager) as defined in section
7.9.1) SHALL adhere to the following security requirements:

- Accessing parental control manager functionality: the OITF SHALL perform a security check (as defined in section
10.1.1) to see if the server has the necessary privileges to interact with the parental control manager functionality, i.e. by
accessing the application/oipfParentalControlmanager embedded object as specified in section 7.9.1. If the
server does not have the necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an
error as defined in section 10.1.1 when an application loaded from that server attempts to access any of the classes,
properties or methods defined in section 7.9.1.

10.1.4 Permission names
This section describes a non-limited set of permission names that MAY be included as part of the “permissions”
extension of a X.509v3 certificate as defined in sections 10.1.1 and 10.1.2:

 “permission_tuner control_lineup”: this permission name allows a server to receive/fetch the tuner’s channel
line-up and to switch an OITF’s local tuner to another channel and to functionality as specified in section 7.13.

 “permission_tuner_lineup” : this permission name allows a server to receive/fetch the tuner’s channel line-up as
specified in section 7.13.

 “permission_tuner_control” : this permission name allows a server to switch an OITF’s local tuner to another
channel as specified in section 7.13.

 “permission_recording” : this permission name allows a server to receive/fetch the tuner’s channel line-up, and
to instantiate the scheduler object (as defined by section 7.10.1) and access its functionality, and to access the
additional functionality as specified in section 7.13.2 for the video/broadcast object to record and timeshift
the current broadcast.

 “permission_download” : this permission name allows a server to initiate downloads.

 “permission_drmagent” : this permission name allows a server to interact with the DRM agent, i.e. by accessing
the DRM agent embedded object as specified in section 7.6.1

 “permission_metadata” : this permission name allows a server to access the DVB EIT p/f information of the
current channel through the “programmes” property of the video/broadcast object, as specified in
section 7.13.3.

 “permission_metadata_search” : this permission name allows a server to access the search functionality
provided client-side metadata search functionality (as defined in section 7.12.1).

 “permission_extendedAV” : this permission name allows a server to interact with the extended A/V control
functionality provided by the OITF, as defined in section 7.13.7.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 257 (289)

 “permission_recordingsmanager” : this permission name allows a server to interact with the recording
scheduler on the OITF using the APIs defined in section 7.4.3 to manage recordings initiated by the current
application.

 “permission_recordingsmanager_all” : this permission name allows a server to interact with the recording
scheduler on the OITF using the APIs defined in section 7.4.3 to manage all recordings, including those initiated
by other applications.

 “permission_recordingsmanager_samedomain” : this permission name allows a server to interact with the
recording scheduler on the OITF using the APIs defined in section 7.4.3 and manage recordings initiated by
applications from the same FQDN.

 “permission_clientCOD” : this permission name allows a server to interact with the CoD catalogue browsing
functionality provided by the OITF, as defined in section 7.12.

 “permission_settings” : this permission name allows a server to modify user settings and configuration using
the APIs defined in section 7.3.1.

 “permission_downloadmanager” : this permission name allows a server to interact with the download manager
on the OITF using the APIs defined in section 7.4.3 to control downloads initiated by the current application.

 “permission_downloadmanager_all” : this permission name allows a server to interact with the download
manager on the OITF using the APIs defined in section 7.4.3 and manage all downloads, including those
initiated by other applications.

 “permission_downloadmanager_samedomain” : this permission name allows a server to interact with the
download manager on the OITF using the APIs defined in section 7.4.3 and manage downloads initiated by
applications from the same FQDN.

 “permission ims”: this permission name allows a server to interact with an IMS Gateway using the APIs defined
in section 7.8.

 “permission_remotemanagement”: this permission name allows a server to interact with an remote diagnostics
and management API defined in section 7.11.

 “permission_gatewayinfo” : this permission name allows a server to interact with the gateway discovery
functionality provided by the client, as defined in sections 4.2 and 7.7.

 “permission_parentalcontrolmanager” : this permission name allows a server to interact with the parental
control manager on the OITF using the APIs defined in section 7.9 to override the parental control settings of an
OITF.

10.1.5 Loading documents from different domains
The contents of an <iframe>, <embed> or <object> element may be retrieved from an FQDN other than the one
from which the top-level document is loaded. In this case, the OITF SHALL enforce security restrictions between the
contents of the element and the parent document. These restrictions may be based on the nested browsing context as
defined in clause 5.1.1 (“Nested Browsing Contexts” of [HTML5] and the security restrictions formalised in clause 5.2.1
(“Security”) of [HTML5],excluding the features not included in this specification.

Documents SHALL be assigned the permissions associated with the FQDN from which they were loaded, as defined in
section 10.1.1, rather than the permissions associated with the initial document of the application. For example
documents loaded in an <iframe> element may be granted a different set of permissions from the top-level document
that contains the <iframe> element. Similarly, following a link to a document from a different FQDN may result in the
newly-loaded document having a different set of permissions than those granted to the previous document even though
they are within the same application boundary.

As described in section 5.1.3, for files requested with XMLHttpRequest, the Same-Origin Policy SHALL be extended
using the application domain as defined in section 5.1.3.

10.2 User Authentication
The OITF SHALL adhere to the user authentication requirements as specified in section 5 of [CSP].

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 258 (289)

Annex A. VOID

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 259 (289)

Annex B. CE-HTML Profiling
This section defines a detailed set of deviations from the CEA-2014-A i-Box and 2-Box model [CEA2014A], in
particular for those changes that are directly related to requirements in sections 5.1 through 5.10 and Annexes A through
I of [CEA2014A]. Changes to requirements of CEA-2014-A are indicated by underlined text for text that must be added,
and by strikethrough text for text that must be removed.

- Changes to section 5.2: several new elements and new attribute/values have been added for the capability
descriptions. Most of these are related to new functionality, and are defined in section 9.3 and hence are not listed
here. With respect to existing elements and attributes, the following changes apply:

o an additional value “0.33x0.33” for attribute “scaling” of the <video_profile> element in bullet w) of [Req.
5.2.1.a], with the following related extension to the schema for type “scalingType”

<xs:enumeration value="0.33x0.33"/>

o the “name”-attribute of the <audio_profile> and <video_profile> elements in CEA-2014-A are restricted to
DLNA media format profiles. The forum has specified its own audio and video format profile names that
can be used by the “name” attribute as well.

o new UI profiles have been defined for [Req. 5.2.1.b] that a client may choose to implement. Details are not
included in this annex.

o for both <video_profile>, and <audio_profile> elements, it is allowed to include multiple profile names
corresponding to the same MIME type, by separating each profile name with a whitespace character.

o element <pointer> requires some clarifications:

m) <pointer> - indicates whether or not the Remote UI Client supports pointer-based input, such as
mouse or touch. If included, the value of this element SHALL be: (true|false). A value of ‘true’ means
that all mouse event types as defined in DOM level 2 Events SHALL be supported, and that server-side
image maps SHALL be fully supported as defined in section 13.6.2 of [HTML401] . Note that a value
of ‘false’ still implies that ‘click’ events SHALL be supported, as per Req 5.4.1.s below.

- Changes to section 5.3:

o Req. 5.3.a (5) states that if the Content-Encoding header is used, it SHALL always have case-insensitive
value “identity”, unless a client/server has explicitly indicated support for other content encodings by using
an Accept-Encoding header. RFC 2616 (section 3.5) states that this content-coding is used only in the
Accept-Encoding header, and SHOULD NOT be used in the Content-Encoding header. We follow RFC
2616 and use the following alternative definition for Req. 5.3.a: “if this header is used, it SHALL always
have a value that matches one of the content encodings as sent by an Accept-Encoding header, and SHALL
adhere to section 3.5 of RFC 2616 regarding the use of “identity” encoding”.

o Req 5.3.a (12) which states the requirements for the User-Agent header is replaced by the description in
section 8.1.

- Changes to section 5.4:

o Since the CSS3 “image-orientation” property was defined in CSS Print/Paged Media, browsers may have
difficulty implementing it for normal web pages. It is therefore made OPTIONAL. Services needing image
rotation SHOULD do this at the server before sending it to the client.

o Support for the “text-shadow” property is OPTIONAL.

o The W3C CSS working group made an official statement that the following DOM2 Style features are
considered to be problematic and have therefore been classified as obsolete.

 The UnknownRule interface (unknown rules should be dropped by the parser and thus never reach
the DOM).

 The getPropertyCSSValue method, CSSValue interface, all interfaces inheriting from CSSValue,
and the RGBColor, Rect, and Counter interfaces (the CSSValue interface is thought to be too
awkward for frequent use).

These features are OPTIONAL.

In addition, the DocumentCSS and DOMImplementationCSS interfaces of DOM level 2 Style are also
OPTIONAL

o The content of section “5.4.2 Window / UIContentFrame scripting object ” SHALL be replaced by the
following text

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 260 (289)

 The following properties and methods SHALL be supported on the window object as defined in
section “The window Object” of [HTML5]:

• document, frames, history, location, name, onkeypress, onkeydown, onkeyup, onblur,
onfocus, parent, self, top, window, frameElement,

• focus(), addEventListener(), removeEventListener()

 The following properties and methods SHALL be supported on the window object as defined in
section “The window Object” of [HTML5] with additional constraints:

• navigator: support for this is OPTIONAL. Additional constraints on this interface are
defined in section 7.15.4.

• close(): calling this method on the Window object of a DAE application SHALL be
equivalent to calling method destroyApplication() of the DAE application (as defined in
section 7.2.2.2).

• blur(): calling this method on the Window object of a DAE application SHALL not
deactivate the application.

 The following methods SHALL be supported on the window object as defined in section “Timers”
of [HTML5]:

• setTimeout(), setInterval(), clearTimeout(), clearInterval()

 The following methods SHALL be supported on the window object as defined in [CSSOM-
VIEW]:

• innerHeight, innerWidth

o The following additional properties and methods SHALL supported on the Window scripting object:

 debug(): as defined in section “7.15.5 Debug print API ” of this specification

 void postMessage(String message, String targetOrigin): used for cross-document messaging as
defined by bullet 10 below.

 OipfObjectFactory oipfObjectFactory: The global factory object which can be used to
instantiate embedded object instead of using HTML <object> tags. See 7.1 for the definition of the
OipfObjectFactory class.

 subscribeToNotifications(String url, String name, Number period, String type): as defined in
“5.6.2 Polling-based Notifications” of [CEA2014A] and further modified in Annex B of this
specification

 XMLHttpRequest: as defined in [XHR].

o HTML5 cross-document messaging SHALL be supported as follows:

10) Cross-document messaging, as defined in [Web Messaging], a subset. The client SHALL support
posting messages with the postMessage method as defined in chapter 4.3 of [Web Messaging],
prototype also listed below for reference. The MessageEvent interface defined in section 3 of
[Web Messaging] SHALL be supported, except for the ports value which MAY be undefined if
the client does not support passing messages with ports.

• void postMessage(any message, String targetOrigin)

o Add keypress events to Requirement 5.4.1.a in the following way:

[Req. 5.4.1.a] Every Remote UI Client SHALL support the DOM event types "keydown", "keypress" and
"keyup" and the following subset of the KeyEvent interface as specified in [18], which SHALL inherit from
the UIEvent interface:

1) Properties:

• readonly Boolean shiftKey;

• readonly Number keyCode;

• readonly Number charCode;

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 261 (289)

2) Methods:

• initKeyEvent(DOMString eventType, Boolean canBubble, Boolean cancelable, Boolean ctrlKey,
Boolean altKey, Boolean shiftKey, Boolean metaKey, Number keyCode, Number charCode),
where:

• argument eventType is either “keydown”, “keypress” or “keyup”,

and

• arguments ctrlKey, altKey and metaKey MAY be ignored.

3) Constants:

• A subset of the VK_* constants as specified in Annex F, corresponding to the keys that are supported
by the Remote UI Client (i.e. SHALL at least include the keys as specified by the client in the
capability profile).

Key constant values defined in Annex F are OPTIONAL for this specification. An OITF SHALL map
VK_* constants to an internal OITF specific value. A DAE application SHALL NOT rely on the internal
OITF specific key code and SHALL use the VK_* key constant literals instead.

For “keydown” and “keyup” events, the internal OIPF specific key code that corresponds to the key that has
been pressed SHALL be included in property keyCode.

For “keypress” events, if pressing a key (or sequence of keys) has resulted in generating a Unicode
character, the resulting Unicode character code SHALL be included in property charCode. If no Unicode
characters results from pressing the key (or sequence of keys), for example for the arrow keys, the key code
as specified in Annex F SHALL be included in property keyCode.

Note: DOM “keypress” events are not supported.

o Add keypress events to Requirement 5.4.1.l:

[Req. 5.4.1.l] A Remote UI Client SHALL generate one or more “keydown” and “keypress” events while a
key is being pressed until the key is released, at a repetition rate determined by the client, and SHALL
generate a “keyup” event as soon as the key is released.

o Next to the “onkeydown” and “onkeyup” events, also add intrinsic event “onkeypress” to requirement [Req.
5.4.2.a] of CEA-2014-A:

 x) String onkeypress – read-write property that specifies the script to be called when a “keypress” event (as
specified in section 5.4.1) occurs on the window/frame that corresponds to this “window”-object.

o Note: future revisions of CEA-2014-A or the DAE specification should consider the ability to specify a
particular (maximum/minimum) size of textual or graphical labels to be inserted.

o Requirement 5.4.a.3.a SHALL be changed as follows;

a) DOM level 2 Core [11], including the extended XML interfaces (except for Notation, Entity,
EntityReference and Processing Instruction), i.e. method hasFeature(DOMString feature, DOMString
version) of the DOMImplementation interface returns true for features “Core” and “XML”, and
version “2.0”.

Requirement 5.4.a.3.c SHALL be extended with the following;

Focus events (i.e. events of type “focus”) SHALL be generated not only for <label>, <input>,
<select>, <textarea>, and <button> as specified in section 1.6.5 of [DOM 2 Events], but also at least
for <a> elements, in accordance with [DOM 3 Events].

For all elements which can receive focus events, a focus event SHALL be generated and the CSS
“:focus” selector must be activated, irrespective if the focus is received through keyboard interaction,
pointer interaction, calling an DOM focus() method through JavaScript, or any other mechanism by
which the focus can be changed.

Requirement 5.4.a.3.d SHALL be changed as follows;

d) DOM level 2 HTML [14] except following interfaces:

• HTMLAppletElement,

• HTMLFrameElement,

• HTMLFrameSetElement

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 262 (289)

The method hasFeature(DOMString feature, DOMString version) of the DOMImplementation
interface returns true for features “HTML” and “XHTML”, and version “2.0”.

Requirement 5.4.a.3.e SHALL be replaced as follows;

e) To distinguish between the subset as defined here for CE-HTML and full support for the DOM
level 2 HTML module, the following applies:

• hasFeature(“CE-HTML”, “1.0”) SHALL return true if the subset of the DOM 2 HTML module is
supported as defined above.

• hasFeature(“HTML”, “2.0”) and hasFeature("XHTML", "2.0") SHALL return true if the full DOM
Level 2 HTML module is supported.

e) DOM level 2 Views [DOM 2 Views] with the method hasFeature(DOMString feature, DOMString
version) of the DOMImplementation interface returning true for feature “Views” and version “2.0”.

f) The method hasFeature(DOMString feature, DOMString version) of the DOMImplementation
interface SHALL return true for feature “CE-HTML” and version “1.0”.

Requirement 5.4.a.6.b SHALL be replaced as follows;

b) If both attributes are defined and not the same, then the value defined by attribute “id” SHALL
take preference.

b) Application authors SHOULD define both “id” and “name” on <a>, <form>, <iframe>, and
<map> elements as described in section C.8 of [XHTML 1.0].

Requirement 5.4.a.7 shall be extended with the following;

• nav-up, nav-down, nav-left, nav-right as defined in section 10.2.2 of [CSS3 UI].

• outline and outline-* as defined in [Req. 5.4.1.q]

• letter-spacing and word-spacing CSS2.1 [28] properties.

• border-top-right-radius, border-bottom-right-radius, border-bottom-left-radius, border-
top-left-radius and border-radius as defined in [CSS3 BG] with the following restrictions:

• Only solid style is guaranteed to work in correlation with border radius: When border radius
is used, non-solid border style may be ignored by an implementation and solid style be used
instead.

• If two borders are connected with a rounded corner, and those two borders have different
computed colors, the OITF MAY draw both borders with the computed color of one of those
two borders.

• An implement may not trim a background image attached to the container box (or other
elements contained in the container) at the outside of the rounded border. Only the
background color of the container is guaranteed to be clipped to the rounded border by an
implementation.

Note that a full implementation of the border radius properties as defined in [CSS3 BG] is
compliant with the subset defined above.

The following corresponding DOM style properties (properties of the CSS2Properties interface)
shall also be supported: borderTopRightRadius, borderBottomRightRadius,
borderBottomLeftRadius, borderTopLeftRadius, borderRadius.

Requirement 5.4.1.f SHALL be changed as follows:

If the input-focus is on any forms element except a button, a Remote UI Client SHALL not generate
any VK_UP, VK_DOWN, VK_LEFT, and VK_RIGHT key-events, except at those points in time
that the focus is about to move away from the form element (e.g. if VK_LEFT is pressed while the
cursor is placed at the beginning of a text-entry), to allow an author of a HTML document to override
the default focus navigation.

• The client SHOULD use the same physical keys for generating the VK_UP, VK_DOWN,
VK_LEFT and VK_RIGHT key events that are used for a spatial navigation mechanism
provided by the client. The same keys SHOULD also be used for spatial navigation specified
through the CSS properties ‘nav-up’, ‘nav-down’, ‘nav-left’ and ‘nav-right’.

• In accordance with this requirement, the focus navigation as defined through CSS properties
‘nav-up’, ‘nav-down’, ‘nav-left’ and ‘nav-right’ SHOULD only be active at those points in time

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 263 (289)

when focus can be moved away from the form-element, to not interfere with the implementation
specific handling of keys inside a form-element.

Requirement 5.4.1.m SHALL be changed as follows:

A Remote UI Client SHALL offer a means to set focus to the following elements in a HTML
document by using key-based input: <a>, <area>, all form elements, <iframe>, and <object> elements
of type “video” as defined in section 5.7.

• Upon receiving focus, the Remote UI Client SHALL generate both a DOM 2 “focus” and a
“DOMFocusIn” event for <a>, <area>, and both a DOM 2 “focus” and “DOMFocusIn”
event for all form elements, for any registered event listeners.

• The Remote UI Client MAY not generate DOM 2 focus and DOMFocusIn events in the
following two cases. For <iframe> elements, and <object> elements of type “video” the
Remote UI Client SHALL call the event listener that has been specified through the onfocus
attribute of the “window” object (see section 5.4.2) that is associated with the iframe. For
<object> elements of type “video”, it SHALL call the event listener specified through the
onfocus attribute of the A/V scripting object (section 5.7). The Remote UI Client MAY not
generate a DOM 2 focus events in those cases.

Add a requirement 5.4.1.p that reads as follows:

[Req. 5.4.1.p] A Remote UI Server SHOULD use the CSS properties ‘nav-up’, ‘nav-down’, ‘nav-left’
and ‘nav-right’ to override the default spatial navigation as provided by the Remote UI client, instead
of defining a spatial navigation mechanism in JavaScript.

Add a requirement 5.4.1.q that reads as follows:

[Req. 5.4.1.q] If a Remote UI Server has specified the “outline-style” attribute to be unequal to “auto”
(as defined in section 8.3 of the CSS3 Basic User Interface Module), for an element that has input
focus, the Remote UI Client SHALL not draw its own focus highlight around this item, but use the
focus highlight style, color and width as defined by the values given to the “outline” and/or “outline-
*” attributes.

Add a requirement 5.4.1.r that reads as follows:

[Req. 5.4.1.r] A Remote UI Client SHALL generate the focus events as specified by [Req. 5.4.1.m]
and SHALL activate the CSS “:focus” selector, for any element which can receive focus events,
irrespective if the focus is received through keyboard interaction, pointer interaction, calling an DOM
focus() method through JavaScript, or any other mechanism by which the focus can be changed.

Add a requirement 5.4.1.s as an extension to 5.4.1.m and 5.4.1.n

[Req. 5.4.1.s] A Remote UI Client SHALL offer a means to activate the following elements in a
HTML document by using key-based input: <a>, <area> <button>, <input type=”submit”>, <input
type=”reset”> and <input type=”button”>, <input type=”radio”>, and <select>.

The Remote UI Client SHOULD allow the same physical key that is used to generate a VK_ENTER
key event to be used to activate these elements if these elements have input focus. If an access key has
been defined the Remote UI Client SHALL allow the access key to be used to activate these element.

Upon activation, the Remote UI Client SHALL generate both a DOM 2 “DOMActivate” and a “click”
event for above listed elements

- Changes to section 5.6.2:

Support for this section SHALL be optional for an OITF. Support for section 5.6.2 SHALL be
indicated through the OITF’s capability description by using element <pollingNotifications> as
defined in section 9.3.14.

Extend requirement 5.6.2.a as follows

[REQ. 5.6.2.A] AN I-BOX REMOTE UI CLIENT SHALL SUPPORT POLLING-BASED
3RD-PARTY NOTIFICATIONS FROM AN I-BOX SERVER.

1) To manage the polling process for a particular notification, an i-Box Remote UI Client

SHALL support the following method of the Window/UIContentFrame object:
Boolean subscribeToNotifications(String url, String name, Number period, String type)

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 264 (289)

where

• url is the complete URL of the HTTP GET request made by the Remote UI Client
every period seconds; the domain of url SHALL equal the domain of the current
document in the CE-HTML browser window, and use SSL or TLS
security[24][9][10]; if it doesn’t, this method has no effect and returns false. If url
equals the URL of any existing notification subscription and the value of period is
positive, the name and period of that notification subscription is updated.

• name is the user friendly name of the notification service.
• period is the polling period of this subscription in seconds. If the value of period

equals 0, any existing notification subscription with exactly the same URL is
cancelled, and the return value indicates the former existence of such a subscription.
If the value of period is negative, no changes are made and the return value indicates
whether a subscription to the given URL already exists. If the value of period is
positive, true is returned only if the Remote UI Client subscribes, or updates an
existing subscription.

• type is the highest priority event type that will be sent by the notification service, and
SHALL be one of the event types listed in bullet 10 of [Req 5.6.1.a], without the
“upnp:”-prefix.

a) On executing the subscribeToNotifications method to subscribe to a new notification,
the Remote UI Client SHALL alert the user to the impending new notification
subscription (including information about the highest priority notification type that will be
sent by the Remote UI Server), and provide the user with at least two options:
• subscribe to this notification, and
• do not subscribe to this notification.

This does not exclude an option that allows a user to always accept notifications from the
same URL.

If the Remote UI Client does not subscribe because the user declined, the subscribeToNotifications method SHALL
return false.

2) To manage the polling process for a particular notification, an i-Box Remote UI Client
SHALL support the following method of the Window/UIContentFrame object:
Number subscribeToNotificationsAsync(String url, String name, Number period, String
type)

where

• url is the complete URL of the HTTP GET request made by the Remote UI Client
every period seconds. url SHALL have the same origin as the current document in
the CE-HTML browser window, and use SSL or TLS security [24][9][10]; if it
doesn’t, this method has no effect and an event indicating a negative response is
dispatched. If url equals the URL of any existing notification subscription and the
value of period is positive, the name and period of that notification subscription is
updated.

• name is the user friendly name of the notification service.
• period is the polling period of this subscription in seconds. The value of period

SHALL be greater than zero.
• type is the highest priority event type that will be sent by the notification service,

and SHALL be one of the event types listed in bullet 9 of [Req 5.6.1.a], without the
“upnp:”-prefix.

• The return value of his method indicated the ID of the subscription request. This is
used when notifying the application of the result of this call, to link a response to the
request that generated it.

a) On executing the subscribeToNotificationsAsync method to subscribe to a new
notification, the Remote UI Client SHALL asynchronously alert the user to the impending
new notification subscription (including information about the highest priority
notification type that will be sent by the Remote UI Server), and provide the user with at
least two options:
• subscribe to this notification, and
• do not subscribe to this notification.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 265 (289)

This does not exclude an option that allows a user to always accept notifications from the
same URL.

Calls to subscribeToNotificationsAsync return immediately. The application will be
notified via the onNotificationSubscriptionResponse function (or corresponding DOM-2
event) user has chosen to subscribe or to not subscribe to the notification.

If two calls to subscribeToNotificationsAsync with the same value for url overlap (i.e.
the notification event of the first call has not yet been dispatched), the Remote UI Client
SHALL interrupt the first call and generate a response event as if the request had been
declined.

3) An i-Box Remote UI Client SHALL support the following property of the
Window/UIContentFrame object:
script onNotificationSubscriptionResponse

where the specified function is called with arguments id and response, which are defined
as follows:

a) Number id – the ID of the subscription request, as indicated by the return value of
the subscribeToNotificationsAsync method.

b) Boolean response – the response indicating whether the subscription request has
been accepted. A value of false indicates that the request has been declined. A
value of true indicates that the request has been accepted.

a) An i-Box Remote UI Client SHALL support the following method of the
Window/UIContentFrame object:
void unsubscribe(string url, string name)

where

o url is the URL used to subscribe to a notification, which SHALL have the same
origin as the current document in the CE-HTML browser window

o name is the user friendly name of the notification service.
 On executing the unsubscribe method, the Remote UI Client SHALL unsubscribe from

the specified notification service. If the application is not subscribed to the specified
notification service or if the page currently loaded in the CE-HTML browser window is
not from the same origin as url, this method SHALL have no effect. When this method
returns, the application shall no longer be subscribed to the notification service.

b) An i-Box Remote UI Client SHALL support the following method of the
Window/UIContentFrame object:
StringCollection listNotificationSubscriptions()

where the return value of this method SHALL be a collection of URLs of notification
services to which HTML documents from the same origin are currently subscribed.

c) An i-Box Remote UI Client SHALL support the following method of the
Window/UIContentFrame object:
Boolean isSubscribed(string url, string name)

where

o url is the URL used to subscribe to a notification, which SHALL have the same
origin as the current document in the CE-HTML browser window

o name is the user friendly name of the notification service.
o The return value of this method SHALL be true if url has the same origin as the

current application and application is currently subscribed to the specified
notification service, or false otherwise.

- Changes to section 5.7:

In addition to the A/V object extensions in section 7.14, the following detailed modifications to
Requirement 5.7.1.f SHALL apply:

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 266 (289)

[Req. 5.7.1.f] The following properties and methods SHALL be supported for audio objects and for
video objects. Support for playlists and support for the “persist” attribute is OPTIONAL.

Requirement 5.7.1.f bullet 1) ‘data’ SHALL be modified as follows;

1) String data [RW] – media URL. If the value of data is changed while media is
playing playback is stopped (resulting in a play state change). The default value is the
empty string. If the value of this attribute is changed, the related data-attribute inside the
DOM tree SHOULD be changed accordingly. If the value of this attribute is set to an
empty string or is changed, the resources (files, server connections, etc…) currently
owned by the object SHALL be released.

Requirement 5.7.1.f bullet 2) ‘playPosition’ SHALL be modified as follows;

1) Number playPosition [R] - the play position in number of milliseconds since the
beginning as denoted by the server (i.e. in relation to NPT 0.0 as described in section 3.6
of RFC 2326) of the media referenced by attribute data when data refers to a single
media item. playPosition is the duration of the currently playing media item of a playlist
if data refers to a playlist. The behaviour of the AV control object when the end of media
(or the end of the currently-available media) is reached is defined in section 7.14.1 of the
DAE specification.

a) If the play position cannot be determined, the playPosition SHALL be
undefined.

Requirement 5.7.1.f bullet 3) ‘playTime’ SHALL be modified as follows;

4) Number playTime [R] - the estimated total duration in milliseconds of the media
referenced by data when data refers to a single media item. playTime is the duration of
the currently playing media item of a playlist if data refers to a playlist.

a) If the duration of the media cannot be determined, the playTime SHALL be
undefined.

Requirement 5.7.1.f bullet 4) ‘playState’ SHALL be modified as follows to fit the state diagram as
specified in section 7.14.1;

4) Number playState [R] - indication of the current play state as follows:

0 - stopped; user (or script) has stopped playback of the current media, or playback has
not yet started.

1 - playing; the current media pointed to by data is currently playing.

2 - paused; the current media pointed to by data has been paused.

3 - connecting; connect to media server, i.e. waiting for connection to media server to be
established, upon first connection or after the connection was lost. In addition, DRM
rights necessary for playback of protected content are also retrieved during this state.

4 - buffering; the media is being buffered before playback. the buffer is being filled in
order to have sufficient data available to initiate or continue playback. In this state,
playback is stalled due to insufficient data in the buffer to continue playback. The player
waits until sufficient data has been buffered to continue playback. For video objects,
whilst being in this state, the player SHOULD show the last completed video frame that
was shown before entering this state. This playstate is an intermediate state to reach
playState 1 (‘playing’). The OITF SHOULD buffer the content in the background whilst
in playState 2 (‘paused’). However, this background buffering does not result into a state
change to state 4.

5 - finished; the playback of the current media has reached the end of the media.

6 - error; an error occurred during media playback, preventing the current media to
start/continue playing.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 267 (289)

Requirement 5.7.1.f bullet 5) ‘error’ SHALL be modified as follows;

5) Number error [R] - error details; only significant if the value of playState equals 6:

0 - A/V format not supported.
1 - cannot connect to server or connection lost.
2 - unidentified error.
3 – insufficient resources.
4 – content corrupt or invalid.
5 – content not available.
6 – content not available at given position.

Requirement 5.7.1.f bullet 11) ‘play’ SHALL be modified as follows;

11) Boolean play(Number speed) - plays the media referenced by data, starting at the
current play position denoted by playPosition, at the supported speed closest to the
value of attribute speed. Negative speeds reverse playback. If no speed is specified, it
defaults to 1. A speed of 0 will pause playback. This method SHALL always return
true. If the current media can be played at the specified speed, true is returned.
Otherwise, false is returned and neither the play state nor the speed is not changed. If
the playback reached the beginning of the media at rewind playback speed, then the
play state SHALL be changed to 2 (‘paused’). A play speed event (see section 7.14.3.2
of the DAE specification) SHALL be generated when the operation has completed,
regardless of the new play speed. If the play speed is not changed, the argument of the
event SHALL be set to the previous play speed.

Requirement 5.7.1.f bullet 13) ‘seek’ SHALL be modified as follows;

• 13) Boolean seek(Number pos) –

• If seek() is called while the player is in state 1 (“playing”), then it sets the current
play position (in milliseconds) to the value of pos and MAY change play state to 4
(‘buffering’).

• If the player is in state 2 (‘paused’), then the seek() method seeks to the new
position, but the play state and the rendered image is not changed.

• If the player is in states 0 (“stopped”), 5 (“finished”) or 6 (“error”), then the new
play position SHALL be retained and SHALL be used (if possible) as the starting
position for playing back the content item indicated by the data property when the
play() method is called. NOTE: changing the content item resets the play postion to
the beginning of the new content item.

• If the player is in states 3 (“connecting”) or 4 (“buffering”) then the seek() method
seeks to the new play position and MAY change play state to 3 (“connecting”).

• (If the new playback position is valid, the value of the playPosition attribute
SHALL be set to the new value before this method returns. Does not affect the play
state. Returns true if the method succeeded, and false otherwise. A play position
event (see section 7.14.3.2 of the DAE specification) will be generated when the
operation has completed, regardless of the success of the operation. If the operation
fails, the argument of the event SHALL be set to the previous play position.

Requirement 5.7.1.g SHALL be modified as follows;

 [Req. 5.7.1.g] The following properties and methods SHALL be supported for video objects:

1. Number String width [RW]; the width of the area used for rendering the video object.
This property is only writable if property fullScreen has value false. The effect of
changes to width SHALL be in accordance with [Req. 5.7.1.c].

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 268 (289)

2. Number String height [RW]; the height of the area used for rendering the video object.
This property is only writable if property fullScreen has value false. The effect of
changes to height SHALL be in accordance with [Req. 5.7.1.c].

- Changes to the Annexes:

o In Annex C, the default value for the transport attribute of the audioProfileType and videoProfileType and
for the “protocolNames” attribute of the downloadType is defined as “http”. In Annex F.1 of [PROT] the
equivalent protocol name is called “http-get”. OITFs and DAE applications SHALL consider the default to
be “http-get”.

o In Annex F, the following key code is defined for the remote control key that allows to toggle between
PLAY and PAUSE states:

const Number VK_PLAY_PAUSE;

o In Annex F, the constant values defined by CEA2014-A are OPTIONAL for this specification. An OITF
SHALL map VK_* constants to an internal OITF specific value. A DAE application SHALL NOT rely on
the internal OITF specific key code and SHALL use the VK_* key constant literals instead.

o In Annex G, the “onkeypress” events in the abbreviation section in the introduction is currently marked
with a dashed blue color. This marking must be removed.

i. The following clarifications apply to inline (i.e. intrinsic) event registration using the on*
attributes in (X)HTML:

• If value event is used inside the script inside the on* attribute, for example as an
argument to one or more functions inside the on* attribute, the associated event is in
scope for the evaluation by the script once the event occurs. For example, in the following
snippet, the event is passed as a parameter to function callMe, and the default action to
follow the link is prevented:
<a href="http://www.google.com" id="clickme" onclick="callMe(event);
event.preventDefault();">Click me

• If the event registration inside the on* attribute returns false, the default action for
activating the (X)HTML element is prevented from occurring. For example, in the
following snippet, the function callMe is called, after which the default action to follow
the link is prevented (i.e.

o In Annex H, as per the change to section 5.4, the “image-orientation” CSS property is not supported.

 The following clarification applies for the “font” CSS property: “Support for system font values
(caption, icon, menu, message-box, small-caption, status-bar) is not required.”

o In Annex I:, the “onkeypress” intrinsic event handler must be added to the “window” interface. And
attribute “charCode” must be added to the “KeyEvent” interface.

 the additional implementation note for EventListener does not apply, and method handleEvent
must be supported as defined in DOM 2 Events.

 The following clarification apply to DOM 2 Events handling:

a) The “this” keyword inside the event handler always refers to the object on which the event
handler was registered (i.e. the HTML element that is currently handling the event). For
example the following snippet
 my_element.addEventListener('click', doSomething, false);

 function doSomething() {

 this.style.backgroundColor = '#cc0000';

 }

will cause the element “my_element” to get a red background whenever the user clicks on it.

 Full support for “DOM Level 2 HTML” specification is added except for the following interfaces:
“HTMLAppletElement”, “HTMLFrameElement” and “HTMLFrameSetElement”.

 Full support for “DOM Level 2 View” specification is added by supporting the “DocumentView”
interface (implemented by the document object) and its “defaultView” attribute.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 269 (289)

Annex C. Design Rationale (informative)

The application model

As specified in section 4.3.2, applications are recorded within a hierarchy of applications. This hierarchy has a number of
benefits for an environment where multiple applications may be executing simultaneously, including:

 Clear separation of applications so that permissions granted to one application cannot be exploited by another.

 Simpler event dispatch, whether for key events or externally triggered events such as parental control changes,
caller ID integration, IM chat messaging, etc.

 The ability to deploy new applications without affecting other applications (either UI or structure).

 The ability for service providers to manage groups of applications, including invisible applications.

Each object representing an application possesses an interface that provides access to methods and attributes that are
uniquely available to applications. For example, the facilities to create and destroy applications are accessed through such
methods.

Development and maintenance efficiencies are gained through distinct application boundaries. Code reuse is offered
through the application tree, permitting applications to export facilities as desired (for example, channel change logic
may be embedded in the “zapper” application and exported to an EPG application). The paired advantages of
compartmentalisation and code re-use are of increasing value as the number of authoring entities and applications grows
– what is of marginal additional value for one authoring entity and three applications is of significant value for 10
authoring entities and 50 applications.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 270 (289)

Annex D. Clarification of Download CoD, streaming
CoD and CSP interfaces (informative)

Introduction

There are many different usage models and scenarios that one can think of when dealing with protected content and the
interactions the user or the device may have with a service provider. This includes usage models regarding user
registration, domain management, license acquisition, downloading content, etc. This informative Annex aims to clarify
the usage of the interfaces as specified in sections 4.6, 4.7, 7.4 and 7.6. in the context of these interactions. However, this
Annex will only show some of the generic mechanisms as offered by these interfaces, not only the browser interfaces, but
also including some of the local interfaces on the device (that actually do not need to be standardized) In the figure
below these are indicated by dotted lines.

The main scenario that we envision is the following:

Figure 15: Main scenario

1. The OITF shows the UI of the CoD store. With this UI the user is able to interact with the CoD store to do
things, such as user registration, browsing the content offered by the CoD store, and purchase a license.

This can be done inside the browser using a standard CE-HTML interface. In the figure above, this is identified
by a).

In those deployments where the OITF supports the metadata CG client, an embedded application or a DAE
application can make use of metadata provided through a metadata CG client. This is identified by g*).

2. After purchasing/selection of the content the selected content needs to be fetched. To this end, the download
manager or the A/V embedded object needs to be triggered with information on how to fetch the content. This is
done by using a special descriptor, with an easily identifiable MIME type

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 271 (289)

“application/vnd.oipf.ContentAccessDownload+xml” in case of download, and
“application/vnd.oipf.ContentAccessStreaming+xml” in case of streaming. This is indicated by
interfaces d0, d1, d2, e0, e1), and e2).

For certain steps in these interactions, the CoD store may need to interact with the DRM agent. This can be done
by talking directly to the DRM agent during a browser session using interfaces b0) and b1). Alternatively, the
<DRMControlInformation> element of the content access descriptor can be used to convey DRM specific
messages to the DRM agent. This is indicated by interface d3).

Note that both the DRM agent and Download manager are autonomous components that will be actively
performing their duties, irrespective whether there is an active browser session or not. They will have their own
interaction with e.g. the license server and download server, and possibly with the user. These interactions are
identified by interfaces c1, c2, d4, d5.

3. The download manager or A/V player fetch the content, as indicated by interfaces d4 and e3.
4. Once the content is fetched, playback can be started in the A/V player. When the stream is protected, the A/V

player will have to get a license from the DRM agent using interface f).

List of interfaces:

 Interface a: browse, select and purchase content from CoD store

This interface is used to interact with the CoD store for operations such as user registration, browsing the content
offered by the CoD store, and purchase a license. This is a standard CE-HTML/HTTP interface.

 Interface b*: In-session interaction from web page with underlying DRM agent

Interface b0 (and the related interface b1) is the application/oipfDrmAgent JavaScript embedded object interface as
defined in section 7.3. This interface will allow messages to be exchanged between pages from the CoD store and the
underlying DRM agent, whilst the user is having a user interface session with the CoD store. Examples of these
messages are Marlin Action tokens. This is useful to enable scenarios, such as subscription license acquisition,
registration, domain management, etc.

The interface basically consists of one method: sendDRMMessage(String msgType, String msg), which is
very generic in the sense that any kind of message can be exchanged. The exact payload and types of messages that
could be exchanged is defined in the [CSP]. An example of such message could be:

pluginElement = document.getElementByID("drmplugin");
pluginElement.sendDRMMessage("application/vnd.marlin.drm.actiontoken+xml",
 "<marlin>…</marlin>",
 "urn:dvb:casystemid:19188");
…
<object id="drmplugin" type="application/oipfDrmAgent"/>

Note that this API is designed to be asynchronous in nature, because certain interactions may take an undeterminate
amount of time. Therefore, it is not wise to make the method synchronous, since that could block the JavaScript
engine. To this end we have defined an event handler: onDRMMessageResult, to register a callback function that
will be called when the DRM agent completed handling of the message. For example:

function callbackF(String msgID, String resultMsg, Integer resultCode) {
 …
}
document.getElementByID("drmplugin").onDRMMessageResult = callbackF;

An equivalent DOM2 event is also generated.

Content authors SHOULD be aware of the asynchronous nature of the API. Only after having received the callback
message, the web page can assume that the DRM agent has handled the DRM message. The service author may need
to define some visual cues to the user if he would like the user to wait for certain actions to finish.

 Interface c*: Autonomous out-of-session interaction between DRM agent and CoD store

Interface c1) is the collection of interfaces between the DRM agent, the CoD store, the license server, etc. as defined
in the [CSP]. The interaction is typically done outside the scope of the browser, and also without the user being
involved. In the few cases where the user would be involved, the device will typically have its own “local” user
interface to handle the interaction with the user. In some of these the DRM agent would need to open a web page to
the originating CoD store, so that the user could resolve the issue directly with the store (e.g. using the rightsURL
extracted from the MPEG2_TS). Since the user could be doing other things at that moment, it may not be appropriate
to popup/replace the current browser session without the user consent. Therefore, the DRM agent could issue a
notification event that will get listed along similar lines to a third-party notification event. The user would be notified

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 272 (289)

that his attention is required with respect to the DRM agent, and can then decide to take action and launch the
browser.

In the figure above, these UI interactions are identified by interface c2) and c3). These interfaces however are
typically local inside the OITF, and are not specified in more detail.

 Interface d*: Downloading content

These interfaces are used for downloading content. In order to trigger the download, a special content-access
descriptor (the content access download descriptor) with an easily identifiable MIME type
“application/vnd.oipf.ContentAccessDownload+xml” is used. This descriptor contains all the relevant
data related to fetch the content. This content-access descriptor is typically provided by the CoD store. A browser
application can fetch this descriptor in various different ways, e.g. by following a link or through an
XMLHttpRequest. This is identified by interface d0. The content access download descriptor and MIME type are
defined in Annex E. It contains elements, such as <ContentURL> which indicates where the content item can be
fetched, and <MetadataURL> to indicate where additional metadata, such as genre, subtitles, artwork, etc. can be
retrieved from.

Interface d1) (and related interface d2) are used to trigger/register the download with the download manager. This is
done by handing over the content access download descriptor to the download manager by calling method
registerDownload() on the application/oipfDownloadTrigger embedded object after retrieving the
content-access descriptor e.g. through XMLHttpRequest. Once the download is registered, the download manager
will take care that the content is downloaded. Since this may be a lengthy task, the download manager is an
independent process from the browser, that will perform its duty in the background even if the browser is closed. By
making the download manager an independent process of the browser, the user can in the meantime do other things.

Interface d3) is a local interface that is used to pass optional DRM messages carried in the content-access descriptor
from the Download manager to the DRM agent. These messages are included as part of one or more
<DRMControlInformation> element inside the content access download descriptor (as defined by Annex E). These
may include messages (such as a Marlin preview license) in cases where license information and the content to be
downloaded can be packaged together.

Interface d4) is the actual interface for downloading the content. The protocols that can be used for downloading
content are defined in the Open ITPV Forum Protocols specification document. The default protocol is HTTP, with
support for HTTP Range requests. The HTTP Range requests are used in order for downloads to be able to resume
after e.g. network failure or device power-down, because as mentioned above, the download manager is an
autonomous component that must continue downloading the requested content items as a background process, even
after a device power-down or network failure, until it succeeds or the user has given permission to terminate the
download.

Interface d5) defines an interface to enable error recovery for the download mechanism. It could be used to recover
from errors or other situations that lead to the corruption or deletion of the content/licenses or a current download to
fail. An example usage is as follows: to be able to refetch the content, and its licenses from the CoD store the OITF
may synchronize with the CoD store by issuing a secure HTTP GET request to the URL of element <OriginSite>
concatenated with “/synchronize” as defined by the content-access descriptor, after which the IPTV application
offering the content-download replies with an XML document describing the list of zero or more content IDs that
had previously been downloaded by the given user (i.e. it is assumed that the IPTV application offering the content
download still remembers which content a user has bought and downloaded before), using for example the following
format:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="synchronizelist" type="SynchronizeType"/>
 <xs:complexType name="SynchronizeType">
 <xs:sequence>
 <xs:element name="content" type="ContentType" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ContentType">
 <xs:sequence>
 <xs:element name="content_ID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Example:
<synchronizelist>
 <content>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 273 (289)

 <content_ID>item 1</content_ID>
 <content_ID>item 2</content_ID>
 ...
 </content>
 </synchronizelist>

Note: To authenticate the user, cookies or single sign on may be used.

The OITF MAY use this information to decide which content and which licenses to refetch. Refetching the content is
done by issuing a secure HTTP GET request to the following URL:

<OriginSite> + “/synchronize” + “?” + a <content_ID> value

after which the application offering the content download replies with the appropriate information to retrigger the
download by providing the appropriate content access download descriptor in order to trigger the download manager
and DRM agent to redownload the content and related licenses.

Interface d6): Although the download manager is an autonomous process, the user may sometimes want to view or
control the state of the download manager. To this end, the download manager will typically offer its own user
interface, which allows the user to manage the ongoing downloads (e.g. suspend/resume, cancel) and monitor the
progress of the items that are being downloaded. This is interface d6) in the figure above. In non-managed network
deployments this is typically a local user interface, for which no protocol needs to be defined. However, since it may
be useful for the user to have a quick overview of the current downloads, in section 7.15.1 of this document a
visualization embedded object called application/oipfStatusView has been defined by which a (third-party)
server provider could include an overview of the status of the download manager as part of its UI. NOTE: for
managed network deployments JavaScript interfaces may be needed to have more control over the UI of the
download manager. This is covered by the download manager APIs in section 7.4.3 of the DAE specification.

 Interface e*: Unicast Streaming and playback of downloaded content using A/V object

The CEA-2014-A A/V control object may be used to render unicast streaming content triggered by a content-access
streaming descriptor (as specified in section 7.14.2) and may be used to play back (partially) downloaded content by
using the method setSource as specified in section 7.14.7.

Interface e0) can be used to pass for a content access streaming descriptor to set up a protected stream, by passing
through interface e1 the necessary information for the A/V player to set up the stream through interface e2), and for
passing included <DRMControlInformation> messages to the DRM agent for DRM protection of the streamed
content using interface f).

Interface e0) can also be used to get feedback from the A/V player (such as DRM related playback errors as defined
in Section 7.13.5) in case of playing streaming content or partially downloaded content (through method
setSource()).

 Interface f: Request license

The A/V Player will render the content. When the content is protected, the A/V embedded object will have to get the
necessary keys from the DRM agent using interface f) in order to decrypt the content.

If the content is played inside the browser, interface e1) defines a callback event “onDRMRightsError” to allow
the page to handle DRM-related errors (in addition to c1).

 Interface g*: Local metadata based applications

These interfaces are for use with local OITF embedded and DAE applications that may wish to use a metadata CG
client for browsing and selecting the content.

Additional notes about Content-on-Demand:

For a detailed specification of how devices and users are authenticated, we refer to [CSP]. For the security model related
to accessing the DRM agent and Download manager from an external source, such as a web page (i.e. to open up the
browser’s sandbox), we refer to section 10.1.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 274 (289)

Annex E. Content Access Descriptor Syntax and
Semantics

E.1 Content Access Download Descriptor Format
An OITF that supports Content Download (i.e. if the <download> element has been given value “true” in the OITF’s
capability profile as specified in section 9.3.4) SHALL support parsing and interpretation of a Content Access Download
Descriptor with MIME type “application/vnd.oipf.ContentAccessDownload+xml”.

 A valid Content Access Download Descriptor SHALL adhere to the following XML Schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 targetNamespace="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- schema filename is iptv-ContentAccessDownloadDescriptor.xsd -->
 <!-- this schema redefines the generic Content Access Descriptor Schema iptv-
 AbstractContentAccessDescriptor.xsd as defined in Annex E.3 by limiting the allowable
 values for attribute "TransferType" to "playable_download" and "full_download" -->
 <xs:redefine schemaLocation="iptv-AbstractContentAccessDescriptor.xsd">
 <xs:simpleType name="TransferTypeEnum">
 <xs:restriction base="tns:TransferTypeEnum">
 <xs:enumeration value="full_download"/>
 <xs:enumeration value="playable_download"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:redefine>

</xs:schema>

The semantics of the allowable values for attribute TransferType as defined by simple string type TransferTypeEnum
is as follows:

a) Attribute “TransferType”, which indicates the type of transfer used for the content, SHALL have one of the
following values:
i) “full_download”, which indicates that the content-item must be fully downloaded and stored before

playback.
ii) “playable_download”, which indicates that the content-item is available for playback whilst it is being

downloaded and stored by the download manager. The term “playable_download” is used solely in the
context of the download manager and relates to storing the content (on persistent storage), and playing the
stored version, and does not relate to buffering in the context of HTTP streaming.

The syntax and semantics of the imported elements from the generic Content Access Descriptor Schema SHALL be as
defined in Annex E.3.

NOTE: An OITF SHALL silently ignore unknown elements and attributes that are part of a Content Access Download
descriptor.

E.2 Content Access Streaming Descriptor Format
An OITF SHALL support parsing and interpretation of a Content Access Streaming Descriptor with MIME type
“application/vnd.oipf.ContentAccessStreaming+xml”.

A valid Content Access Streaming Descriptor SHALL adhere to the following XML Schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="urn:oipf:iptv:ContentAccessStreamingDescriptor:2008-1"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 targetNamespace="urn:oipf:iptv:ContentAccessStreamingDescriptor:2008-1"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- schema filename is iptv-ContentAccessStreamingDescriptor.xsd -->
 <!-- this schema redefines the generic Content Access Descriptor Schema iptv-
 AbstractContentAccessDescriptor.xsd as defined in Annex E.3 by limiting the allowable
 values for attribute "TransferType" to "streaming" -->
 <xs:redefine schemaLocation="iptv-AbstractContentAccessDescriptor.xsd">
 <xs:simpleType name="TransferTypeEnum">
 <xs:restriction base="tns:TransferTypeEnum">
 <xs:enumeration value="streaming"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:redefine>

</xs:schema>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 275 (289)

The semantics of the allowable values for attribute TransferType as defined by simple string type TransferTypeEnum
is as follows:

b) Attribute “TransferType”, which indicates the type of transfer used for the content, SHALL have one of the
following values:
i) “streaming”, which indicates that the content-item is streamed and should not be stored. This TransferType

value is required for unicast streaming using an A/V control object as defined in section 7.14.2.

The syntax and semantics of the imported elements from the generic Content Access Descriptor Schema SHALL be as
defined in Annex E.3.

The <notifyURL> element has no meaning in this context, SHOULD NOT be encoded and SHOULD be ignored by
OITFs if present.

NOTE: An OITF SHALL silently ignore unknown elements and attributes that are part of a Content Access Streaming
descriptor.

E.3 Abstract Content Access Descriptor Format
This section specifies the generic (i.e. "abstract") content access descriptor XML Schema that forms the basis for the
XML Schemas of document types: application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml.

An Abstract Content Access Descriptor SHALL adhere to the semantics as defined in the bulleted list below. In this
bulleted list, optional means optional for server, but mandatory to be supported on OITFs that have indicated support for
MIME type “application/vnd.oipf.ContentAccessDownload+xml”. Mandatory means mandatory for the
server to include this element in the content access descriptor.

1) <Contents> - mandatory element which is a container for one or more associated <ContentItem> elements as child
element.

2) <ContentItem> - mandatory element which indicates a content-item. All other elements listed below are child-
elements of a <ContentItem> element.

3) <Title> - mandatory element which indicates a user interpretable name to describe the content item. In case of
content download, it may serve as a basis/suggestion for the actual filename used for storing the downloaded content
item. It is recommended for an OITF to not require the user to enter a filename and select the storage device for
storing a downloaded content item.

4) <Synopsis> - optional element which indicates a user interpretable description of the content item.
5) <OriginSite> - mandatory element which indicates the URL of the site from which this content access description

document can be downloaded. Typically this is the site from which the content is/can be purchased.
6) <OriginSiteName> - Optional element, which gives the friendly name describing the origin site.
7) <ContentID> - Optional element which gives a unique identification of the content item relative to the OriginSite.
8) <ContentURL> - mandatory element which indicates the URL from which the content can be fetched. The element

has the following attributes:
a) Optional attribute “DRMSystemID”, which indicates the DRM system for which this URL applies, using a

value as defined by element DRMSystemID in Table 6 of [META]. For example, for Marlin, the
DRMSystemID value is “urn:dvb:casystemid:19188”. This attribute is used for linking a <ContentURL> to a
corresponding <DRMControlInformation> element with the same DRMSystemID value. If the
“DRMSystemID” attribute is not specified or has value empty string, then this indicates that the content is not
DRM protected.

b) Attribute “TransferType”, which indicates the type of transfer used for the content. The concrete values that
are allowed for this attribute are defined in Annexes E.1 and E.2 for document types
application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml.

c) Mandatory attribute “Size”, which indicates the size of the content item in bytes. If the size is unknown (e.g. in
case of streaming), the value of this element is -1. If the value is greater or equal to 0, the value given here
SHALL correspond to the value given to the Content-Size HTTP header if the content is fetched through an
HTTP ContentURL. If after downloading the content item the size of the downloaded content item does not
match the indicated size parameter, the OITF SHALL report failed download (if the
application/oipfDownloadManager object is used an event is dispatched to the
onDownloadStateChange listener(s) with reason code 3, “The item is invalid due to bad checksum or
length”). The OITF SHOULD remove the downloaded content item

d) Optional attribute “MD5Hash”, which indicates the MD5 hash value [RFC1321] of the content item. This value
is used to check the correctness of the downloaded file. If after downloading the content item the MD5 hash
value of the downloaded content item does not match the indicated MD5 hash value, it is recommended for the
OITF to remove the downloaded content item.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 276 (289)

e) Optional attribute “Duration”, which indicates the media playback duration of the media item in the following
form "hh:mm:ss".

f) Mandatory attribute “MIMEType”, which indicates the MIME type of the content item. It is recommended for
an OITF to inform the user if the content-type of a content item being retrieved cannot be interpreted by the
OITF.

g) Optional attribute “MediaFormat”, which describes the media format of the content item. The value of this
element should be one of the terms defined by the AVMediaFormatCS classification scheme specified in
[META].

h) Optional attribute “VideoCoding”, which describes the coding format of the video. The value of this element
should be one of the terms defined by the VisualCodingFormatCS classification scheme defined in [META].

i) Optional attribute “AudioCoding”, which describes the coding format of the audio. The value of this element
should be one of the terms defined by the AudioCodingFormatCS classification scheme defined in [META].

Multiple <ContentURL> elements may be included for a single <ContentItem>, as long as each <ContentURL>
element has a different value for the “DRMSystemID” attribute.

9) <MetadataURL> - optional element which indicates the URL from which additional metadata can be fetched for the
content item, such as artwork, subtitle files. By default the metadata must be a text/xml document formatted
according to TV anytime, as defined in [META].

10) <NotifyURL> - optional element which indicates the URL to which an HTTP GET request SHALL be made by the
OITF, after the content-item has been fully and successfully fetched, in order to inform the server of the successful
completion of the transfer. If any content is returned from the <NotifyURL>, it MAY be shown in the browser.

11) <IconURL> - optional element which indicates the URL of an image which is a visual representation of the item that
is being downloaded. Valid content types include the image formats as listed in section 9 of [MEDIA].

12) <ParentalRating> - optional element which indicates the parental rating value (e.g. “PG-13”) for this content item.
The element has the following attributes:
e. Attribute “Scheme”, which indicates the name of the parental rating scheme that is used for indicating the value.

Valid rating scheme names include the ParentalRating classification scheme names as identified by property
“scheme” of the ParentalRating object as defined in section 7.9.4.

f. Attribute “Region”, which indicates the region to which the parental rating applies. Valid region names include
the case-insensitive alpha-2 region codes as defined in ISO 3166-1.

Multiple <ParentalRating> elements may exist, as long as each <ParentalRating> element has a different value for
the “Scheme” or the “Region” attribute.

13) <DRMControlInformation> - optional element which allows the inclusion of DRM related information that SHALL
be passed to the DRM agent. This element SHALL adhere to the DRMControlInformation Type Semantics as
defined in Table 6 of [META]. For Marlin, additional semantics are defined in section 4.1.5 of [CSP]. This element
SHALL be included for any DRM System ID for which a corresponding “DRMSystemID” value was specified as
attribute of a <ContentURL> element.
Multiple <DRMControlInformation> elements MAY be included for a single <ContentItem>, as long as each
<DRMControlInformation> element has a different value for its “DRMSystemID” child-element.

An Abstract Content Access Descriptor SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

<!-- schema filename is iptv-AbstractContentAccessDescriptor.xsd -->

<!-- this is the generic (i.e. "abstract") content access descriptor XML Schema that forms the
basis for the XML Schemas of document types: application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml. This schema includes the definition for
abstract type "DRMPrivateDataType" (as defined in Open IPTV Forum Solution Specification Volume
3 Metadata Release 1) and its specific instance type "MarlinPrivateDataType" or
"HexBinaryPrivateDataType" (as defined in Open IPTV Forum Solution Specification Volume 7
Authentication, Content Protection and Service Protection Release 1) -->
<xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
<xs:include schemaLocation="csp-MarlinPrivateDataType.xsd"/>
<xs:include schemaLocation="csp-DRMPrivateDataType.xsd"/>
<xs:include schemaLocation="csp-HexBinaryPrivateDataType.xsd"/>

<xs:element name="Contents" type="ContentsType"/>
 <xs:complexType name="ContentsType">
 <xs:sequence>
 <xs:element name="ContentItem" type="ContItemType" minOccurs="1"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ContItemType">

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 277 (289)

 <xs:sequence>
 <xs:element name="Title" type="TitleType" minOccurs="1"/>
 <xs:element name="Synopsis" type="SynopsisType" minOccurs="0"/>
 <xs:element name="OriginSite" type="xs:anyURI" minOccurs="1"/>
 <xs:element name="OriginSiteName" type="xs:string" minOccurs="0"/>
 <xs:element name="ContentID" type="xs:string" minOccurs="0"/>
 <xs:element name="ContentURL" type="ContentURLType" minOccurs="1"
 maxOccurs="unbounded"/>
 <xs:element name="MetadataURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="NotifyURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="IconURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="ParentalRating" type="ParentalRatingType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="DRMControlInformation" type="DRMControlInformationType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

</xs:complexType>
 <xs:complexType name="TitleType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="SynopsisType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="ContentURLType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="DRMSystemID" type="xs:string" use="optional"/>
 <xs:attribute name="TransferType" type="TransferTypeEnum" use="required"/>
 <xs:attribute name="MD5Hash" type="xs:string" use="optional"/>
 <xs:attribute name="Duration" type="xs:duration" use="optional"/>
 <xs:attribute name="Size" type="xs:integer" use="required"/>
 <xs:attribute name="MIMEType" type="xs:string" use="required"/>
 <xs:attribute name="MediaFormat" type="xs:string" use="optional"/>
 <xs:attribute name="VideoCoding" type="xs:string" use="optional"/>
 <xs:attribute name="AudioCoding" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>

</xs:complexType>
<!-- The TransferType is a string in this generic content access descriptor. The values of the
TransferTypeEnum are restricted in the document instance types
"application/vnd.oipf.ContentAccessDownloadDescriptor" and
"application/vnd.oipf.ContentAccessStreamingDescriptor" as defined in Annexes E.1 and E.2.-->
 <xs:simpleType name="TransferTypeEnum">
 <xs:restriction base="xs:string"/>

</xs:simpleType>
<xs:complexType name="ParentalRatingType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Scheme" type="xs:string" use="optional"/>
 <xs:attribute name="Region" type="xs:string" use="optional"/>
 </xs:extension>

 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="DRMControlInformationType">
 <xs:sequence>
 <xs:element name="DRMSystemID" type="xs:string"/>
 <xs:element name="DRMContentID" type="xs:string"/>
 <xs:element name="RightsIssuerURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="SilentRightsURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="PreviewRightsURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="DoNotRecord" type="xs:boolean" minOccurs="0"/>
 <xs:element name="DoNotTimeShift" type="xs:boolean" minOccurs="0"/>
 <xs:element ref="DRMGenericData" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="DRMPrivateData" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="DRMGenericData" type="DRMGenericDataType"/>
 <xs:element name="DRMPrivateData" type="DRMPrivateDataType"/>

 <xs:complexType name="DRMGenericDataType">
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 278 (289)

 <xs:element name="MarlinPrivateData" type="MarlinPrivateDataType"
 substitutionGroup="DRMPrivateData"/>
 <xs:element name="HexBinaryPrivateData" type="HexBinaryPrivateDataType"
 substitutionGroup="DRMPrivateData"/>

</xs:schema>

An OITF SHALL silently ignore unknown elements and attributes that are part of a content-access descriptor.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 279 (289)

Annex F. Capability Extensions Schema
This Annex contains the schema that includes the extensions and modifications to the capability negotiation mechanism
as defined in section 9.3. This schema redefines and adds the necessary extensions to the existing capability description
schema as defined in Annex C of CEA-2014 [CEA2014A]. The schema in this Annex SHALL be used instead of the
existing capability description as defined in Annex C of CEA-2014 [CEA2014A]. Note that for the additional
“0.33x0.33” value for “scalingType” as defined in section 9.3.15, a special construction has been defined. See the last
two paragraphs of this Annex for more information.
<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema xmlns="urn:oipf:config:oitf:oitfCapabilities:2009-1"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:oipf:config:oitf:oitfCapabilities:2009-1"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- schema filename is config-oitf-oitfCapabilities.xsd -->
 <!-- Redefined uiExtensionsType of the original schema as defined in Annex C of CEA-2014

 (i.e. imports/ce-html-profiles-1-0.xsd) to add the new elements defined in section 9.2

 of Open IPTV forum Volume 5 Declarative Application Environment Release 1 specification.

 -->
 <xs:redefine schemaLocation="imports/ce-html-profiles-1-0.xsd">
 <xs:complexType name="uiExtensionType">
 <xs:complexContent>
 <xs:extension base="uiExtensionType">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="video_broadcast" type="videoBroadcastType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="overlaylocaltuner" type="overlayType"/>
 <xs:element name="overlayIPbroadcast" type="overlayType"/>
 <xs:element name="recording" type="pvrType"/>
 <xs:element name="parentalcontrol" type="parentalControlType"/>
 <xs:element name="extendedAVControl" type="xs:boolean"/>
 <xs:element name="clientMetadata" type="metadataType"/>
 <xs:element name="configurationChanges" type="xs:boolean"/>
 <xs:element name="communicationServices" type="xs:boolean"/>
 <xs:element name="presenceMessaging" type="xs:boolean"/>
 <xs:element name="drm" type="drmType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="remote_diagnostics" type="xs:boolean"/>
 <xs:element name="pollingNotifications" type="xs:boolean" />
 <xs:element name="mdtf" type="xs:boolean"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Redefined downloadType to add attribute manageDownloads -->
 <xs:complexType name="downloadType">
 <xs:simpleContent>
 <xs:extension base="downloadType">
 <xs:attribute name="manageDownloads" type="manageDownloadsType" default="none"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <!-- Redefined audioProfileType to add attribute DRMSystemID -->
 <xs:complexType name="audioProfileType">
 <xs:complexContent>
 <xs:extension base="audioProfileType">
 <xs:attribute name="DRMSystemID" type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Redefined videoProfileType to add attribute DRMSystemID -->
 <xs:complexType name="videoProfileType">
 <xs:complexContent>
 <xs:extension base="videoProfileType">
 <xs:attribute name="DRMSystemID" type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>
 <!-- ADDED: type definitions for the new elements defined in section 9.2 of the

 Open IPTV forum Volume 5 Declarative Application Environment Release 1 specification

 -->
 <xs:simpleType name="manageDownloadsType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="initiator"/>
 <xs:enumeration value="samedomain"/>
 <xs:enumeration value="all"/>
 </xs:restriction>
 </xs:simpleType>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 280 (289)

 <xs:simpleType name="manageRecordingsType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="initiator"/>
 <xs:enumeration value="samedomain"/>
 <xs:enumeration value="all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="videoBroadcastType">
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="transport" type="xs:string"/>
 <xs:attribute name="nrstreams" type="xs:unsignedInt" default="1"/>
 <xs:attribute name="scaling" type="scalingType" default="arbitrary"/>
 <xs:attribute name="minSize" type="xs:unsignedInt" default="0"/>
 <xs:attribute name="postList" type="xs:boolean" default="false"/>
 </xs:complexType>
 <xs:complexType name="pvrType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="ipBroadcast" type="xs:boolean" default="false"/>
 <xs:attribute name="manageRecordings" type="manageRecordingsType" default="none"/>
 <xs:attribute name="postList" type="xs:boolean" default="false"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="parentalControlType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="schemes" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="metadataType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="type" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="drmType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="DRMSystemID" type="xs:string" use="required"/>
 <xs:attribute name="protectionGateways" type="xs:string" default=""/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

Due to limitations of XML Schema it is not possible to redefine/extend the enumeration of type “scalingType” to add the
additional value “0.33x0.33” as defined in section 9.3.15. Therefore, this value must be directly added to the original
schema as defined in Annex C of CEA-2014 [CEA2014A] (i.e. imports/ce-html-profiles-1-0.xsd), as follows:
 [...]

 <xs:simpleType name="scalingType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="arbitrary"/>
 <xs:enumeration value="quartersize"/>
 <xs:enumeration value="none"/>
 <xs:enumeration value="0.33x0.33"/>
 </xs:restriction>

 </xs:simpleType>

[...]

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 281 (289)

Annex G. Client Channel Listing Format
An OITF that supports sending the Client Channel Listing through the HTTP POST method defined in section 4.8.1.2
SHALL adhere to the XML Schema of the Client Channel Listing defined in this annex for which the following
semantics apply:

1) <ChannelConfig> - mandatory root element of the Client Channel Listing.
2) <ChannelList> - mandatory container element for zero or more <Channel> elements, the order of which

corresponds to the channel order as managed by the OITF.
3) <Channel> - element that represents a channel that can be received by a tuner of the OITF. The element has the

following attributes:
a. Mandatory attribute “ccid” which specifies a unique identifier of the channel within the scope of the OITF.

The format of ccid SHALL have a prefix ‘ccid:’, e.g., ‘ccid:{tuner.}majorChannel{.minorChannel}’. The
ccid is defined and managed by the OITF.

b. Optional attribute “channelType” which indicates the type of media content carried over the channel. Valid
values are specified in section 7.13.11.1. If not included, the default value is “TYPE_OTHER”.

c. Mandatory attribute “idType” which specifies the type of identification that is used for the channel. Valid
values are specified in section 7.13.11.1.

d. Optional attribute “tunerID” which specifies a unique identifier of the tuner within the scope of the OITF.
4) <ONID> - mandatory child element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies the

DVB or ISDB original network ID. The value can be empty (i.e. <ONID/>) if stream does not contain an
SDT_Actual.

5) <TSID> - mandatory child element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies the
DVB or ISDB transport stream ID.

6) <SID> - mandatory element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies the DVB or
ISDB service ID.

7) <SourceID> - mandatory child element of a <Channel> element of type ID_ATSC_T which specifies the ATSC
source_ID.

8) <Freq> - mandatory child element of a <Channel> element of type “ID_ANALOG” which specifies the frequency
of the content carrier in kHz.

9) <CNI> - optional child element of a <Channel> element of type “ID_ANALOG” which specifies the VPS/PDC
confirmed network identifier.

10) <IPBroadcastID> - mandatory child element of a <Channel> element of type “ID_IPTV_SDS” or “ID_IPTV_URI”.
if the channel has type “ID_IPTV_SDS”, this element denotes the DVB Textual Service Identifier of the IP
broadcast service, specified in the format “ServiceName.DomainName” with the ServiceName and DomainName as
defined in
TS 102 034 V1.3.1. If the channel has type “ID_IPTV_URI”, this element denotes the URI of the IP broadcast
service.

11) <MajorChannel>> - optional child element of a <Channel> element of type “ID_ATSC_*”. This element denotes
the major channel number, if assigned. Value 0 otherwise.

12) <MinorChannel> optional child element of a <Channel> element of type “ID_ATSC_*”. This element denotes the
minor channel number (in relation to the major channel number as indicated through element <MajorChannel>) if
assigned. Value 0 otherwise.

13) <Name> - mandatory child element of a <Channel> element which specifies the name of the broadcaster. May be an
empty string.

14) <Favourite> - optional child element of a <Channel> element indicating that the user has marked this channel as a
favourite. The element has the following attribute:
a. Optional attribute “FavIDS” indicating in which favourite lists, if any, this channel is selected.

15) <FavouriteLists> - optional child element of the <ChannelConfig> element containing one or more <FavouriteList>
elements.

16) <FavouriteList> - mandatory child element of the <FavouriteLists> element that represents a favourite list that is
(partially) managed by the OITF. The element has the following attribute:
1. Mandatory attribute “FavID” which specifies the unique identifier of the favourite list.

17) <FavName> - mandatory child element of the <FavouriteList> element specifying the name of the favourite list.
18) <CurrentFavouriteList> - conditionally optional child element of the <ChannelConfig> element specifying the

currently active favourite list.
19) <Recordable> - optional child element of a <Channel> element indicating whether the channel can be recorded.

Valid values include “True” or “False”. If this element is not included, the default value is “False”. The value
SHALL be ignored if the OITF did not indicate support for control of its recording functionality.

20) <Locked> - optional child element of a <Channel> element indicating whether the current state of the parental
control system prevents the channel from being viewed (e.g. a correct parental control pin has not been entered).
Valid values include “True” or “False”. If this element is not included, the default value is “False”.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 282 (289)

21) <ManualBlock> - optional child element of a <Channel> element indicating whether the user has manually blocked
viewing of this channel. Manual blocking of a channel treats the channel as if its parental rating value always
exceeded the system threshold. Valid values include “True” or “False”. If this element is not included, the default
value is “False”.

A valid Client Channel Listing SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="ChannelConfig">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ChannelList"/>
 <xs:sequence minOccurs="0">
 <xs:element ref="FavouriteLists"/>
 <xs:element ref="CurrentFavouriteList" minOccurs="0"/>
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ChannelList">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Channel" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Channel">
 <xs:annotation>
 <xs:documentation>
 For a DVB digital channel use ONID+TSID+SID,
 for an ISDB (ARIB) digital channel use ONID+TSID+SID,
 for a ATSC terrestrial channel use SourceID,
 for analog channel use Freq and CNI (if available).
 The IPBroadcastID element is relevant for IPTV broadcasts, as defined in section 7.5.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:sequence>
 <xs:element ref="ONID"/>
 <xs:element ref="TSID"/>
 <xs:element ref="SID"/>
 </xs:sequence>
 <xs:element ref="SourceID"/>
 <xs:sequence>
 <xs:element ref="Freq"/>
 <xs:element ref="CNI" minOccurs="0"/>
 </xs:sequence>
 <xs:element ref="IPBroadcastID"/>
 </xs:choice>
 <xs:element ref="Name"/>
 <xs:element ref="Favourite" minOccurs="0"/>
 <xs:element ref="Recordable" minOccurs="0"/>
 <xs:element ref="Locked" minOccurs="0"/>
 <xs:element ref="ManualBlock" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="CCID" type="xs:IDREF" use="required"/>
 <xs:attribute name="channelType" type="xs:string" default="TYPE_OTHER"/>
 <xs:attribute name="idType" type="xs:string" use="required"/>
 <xs:attribute name="TunerID" type="xs:IDREF" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="ONID" type="xs:integer"/>
 <xs:element name="TSID" type="xs:integer"/>
 <xs:element name="SID" type="xs:integer"/>
 <xs:element name="SourceID" type="xs:integer"/>
 <xs:element name="Freq" type="xs:integer"/>
 <xs:element name="CNI" type="xs:integer"/>
 <xs:element name="IPBroadcastID" type="xs:string"/>
 <xs:element name="MajorChannel" type="xs:integer"/>
 <xs:element name="MinorChannel" type="xs:integer"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Favourite">
 <xs:complexType>
 <xs:attribute name="FavIDS" type="xs:IDREFS"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="FavouriteLists">
 <xs:complexType>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 283 (289)

 <xs:sequence>
 <xs:element ref="FavouriteList" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="FavouriteList">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="FavName">
 <xs:attribute name="FavID" type="xs:ID" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="FavName">
 <xs:sequence>
 <xs:element ref="FavName"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="FavName" type="xs:string"/>
 <xs:element name="CurrentFavouriteList">
 <xs:complexType>
 <xs:attribute name="FavID" type="xs:IDREF" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Recordable" type="xs:boolean"/>
 <xs:element name="Locked" type="xs:boolean"/>
 <xs:element name="ManualBlock" type="xs:boolean"/>
</xs:schema>

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 284 (289)

Annex H. Display Model
H.1 Logical plane model
Digital TV terminals typically have multiple planes for displaying graphics, subtitles, video and background color. This
section defines a logical plane model for OITFs. Figure 16 shows the ordering of these logical planes.

Figure 16: Logical plane model (informative)

This logical plane model does not imply any particular physical implementation. For instance, the presence of two
graphic planes and a subtitle plane does not imply a requirement for three hardware graphic planes.

The logical planes are defined as follows:

 The “Background color plane” displays a single uniform color which SHALL be black. This plane SHALL be at
the bottom of the logical display stack.

 The “Video plane” is used to display video. This plane SHALL be on top of the background color plane in the
logical display stack. The interaction between the “video plane” and the video/broadcast object is described in
clause 10.1.2. Streamed video may appear to be presented in a plane other than the logical video plane. The
present document is intentionally silent about the mechanism used by an OITF to achieve this behaviour

 The “Subtitles plane” is used to display subtitles. This plane SHALL be on top of the video plane in the logical
display stack.

 The “DAE application graphic plane” is used to display any running DAE applications. This plane SHALL be
on top of the subtitles plane in the logical display stack. The logical resolution of this plane is given by the
<width> and <height> elements of the capability description. The default background color of the browser
rendering canvas (as defined in section 2.3.1 of CSS2.1) is terminal specific. Applications should explicitly set
the background of their <body> element to transparent using (for example) the “background-color” CSS rule or
any equivalent construct.

 The “Platform-specific application graphic plane” is used to display applications specific to the OITF such as
native system menus, banners or pop-ups. This plane SHALL be on top of the DAE application graphic plane in
the logical display stack.

For subtitles, the following rules apply:

 OITFs SHOULD support simultaneous display of application and subtitles. In that case, the OITF SHALL
display the application over the subtitles (as shown in Figure 16). If the video is rescaled, the subtitles SHALL
be rescaled/repositioned appropriately or not displayed at all.

 If the presentation of subtitles is requested prior to the launch of an application, then OITFs which cannot
support simultaneous display of applications and subtitles SHALL display subtitles in preference to running the
application. The OITF MAY offer the end-user the opportunity to disable subtitles and run the application
instead.

 If the presentation of subtitles is requested while an application is running, OITFs which cannot support
simultaneous display of applications and subtitles SHALL display applications in preference to the presentation
of subtitles.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 285 (289)

NOTE: In consequence, display of subtitles with broadband delivered video is only possible on such terminals by
including the subtitles as part of the video.

H.2 Interaction with the video/broadcast and A/V Control
objects

The behaviour of the video/broadcast object is defined in section 7.13.1.1. When no video/broadcast object is
instantiated, or when all video/broadcast objects are in the Unrealized state, broadcast video presentation SHALL be
under the control of the OITF. When video is under the control of the OITF:

 Any broadcast video being presented SHALL be displayed in the logical video plane.

 The complete logical video plane SHALL be filled.

 The OITF MAY scale and/or position video, for example to remove black bars.

For broadcast related applications as defined in section 5.2.3, broadcast video presentation SHALL initially be under the
control of the OITF. Applications wanting to control video presentation SHALL create a video/broadcast object.

When a video/broadcast object is in any state other than the Unrealized state, broadcast video presentation SHALL be
under the control of the application. When video is under the control of the application:

 When the video/broadcast object or AV Control object is not in “full-screen mode”, any video being presented
SHALL be scaled and positioned in the following way:

 if the video/broadcast object has the same aspect ratio as the video the four corners of the video SHALL
match exactly the corners of the video/broadcast object

 otherwise the video SHALL be scaled such that one side of the video fills the video/broadcast object
fully without cropping the picture. The aspect ratio SHALL be preserved. Along the side where the video
is shorter than the video/broadcast object, the video SHALL be centered. The area of the video plane not
containing video SHALL be opaque black.

 When the video/broadcast object or AV Control object is in “full-screen mode”, presented video SHALL be
scaled to fill the entire logical video plane. The OITF MAY further scale and/or position video, for example to
remove black bars.

 Depending on the Z index of the video/broadcast or AV Control object with respect to other HTML elements
(regardless of whether the object is in “fullscreen mode” or not), presented opaque video may fully or partially
overlap other HTML elements with a lower Z index, and may in turn be fully or partially overlapped by HTML
elements with a higher Z index. As a result of this, video may appear to be presented in a plane other than the
logical video plane. This specification is intentionally silent about the mechanism used by an OITF to achieve
this behaviour.

 Calling the Application.hide() method SHALL cause video (and any subtitles) being presented under the control
of that application to be hidden, and any audio being presented by the video/broadcast or AV Control object
under the control of that application to be muted. Calling Application.show() SHALL cause video and audio
presentation to be restored.

If the release() method is called on a video/broadcast object, or if the object is garbage collected, control of broadcast
video presentation SHALL be returned to the OITF and video SHALL be re-scaled and re-positioned (if necessary).

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 286 (289)

H.3 Graphic safe area (informative)
Figure 17 shows the recommended safe area for content authoring for the OITF_HD_UIPROF default profile:

Figure 17: Graphic safe area

H.4 Current Channel (informative)
There are 3 different “current channel” concepts in this specification;

 The current channel of an OITF. This is the most obvious “current channel” to the end-user but the most
complex to properly define technically – particularly where more than one channel is being presented at the
same time. The bindToCurrentChannel() method implicitly defines this as this the channel whose audio is being
presented.

 The current channel of a <video/broadcast> object. This is the easiest to define technically.

 The current channel of a broadcast-related application. This is the channel which is currently the source of the
signalling information controlling the lifecycle of a broadcast-related application (as described in section 5.2.3).

In simple situations, all of these may refer to the same channel. In complex situations they may not. Here are some
examples;

Table 16: Clarification of the “current channel” concept in different scenarios

Scenario Current Channel
of the OITF

Current
Channel of

<video
/broadcast>

object(s)

Current
channel of
broadcast-

related
application(s)

The OITF is presenting exactly one
broadcast video channel, this video is being
presented by a <video/broadcast> object (in
the Presenting state) which is part of a
broadcast-related application which is
controlled by signalling information from that
broadcast video channel

All 3 current channels reference the same broadcast
channel.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 287 (289)

Scenario Current Channel
of the OITF

Current
Channel of

<video
/broadcast>

object(s)

Current
channel of
broadcast-

related
application(s)

The OITF is presenting exactly one
broadcast video channel, this video is under
the control of the OITF (as defined in
annex H.2) and one or more broadcast-
related applications are running which are
controlled by signalling information from that
broadcast video channel none of which
have a <video/broadcast> object outside
the Unrealized state.

The channel being
presented by the
OITF

Not relevant The channel
being presented
by the OITF

The OITF is presenting exactly one
broadcast video channel, this video is under
the control of the OITF (as defined in
annex H.2) and no broadcast-related
applications are running.

The channel being
presented by the
OITF

Not relevant Not relevant

The OITF is presenting two broadcast video
channels, one main channel (responding to
channel up and channel down) and a PiP
channel.

The main channel
(the one responding
to channel up /
channel down)

Not relevant. Not relevant.

The OITF is presenting two broadcast video
channels, one main channel (responding to
channel up and channel down) and a PiP
channel. A broadcast-related application is
running associated with the main channel.
The user swaps the main channel to PiP
and vice-versa.

The channel which
was previously PiP.

Not relevant. This
specification
does not
address what
happens to
broadcast-
related
applications
under these
circumstances.

A broadcast-independent or service
provider related DAE application has two
<video/broadcast> objects, one presenting
the channel resulting from a call to
bindToCurrentChannel() and the second
presenting another channel set by
setChannel().

The same as the
current channel of
the
<video/broadcast>
object presenting
the channel
resulting from a call
to
bindToCurrentChan
nel()

The two
<video/broad
cast> objects
have different
current
channels.

Not relevant.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 288 (289)

Annexes I-M
For compatibility with release 2 of the OIPF DAE specification and to preserve the numbering of identical sections,
Annexes I-M are intentionally not included in the present document.

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Page 289 (289)

Volume 5 - Declarative Application Environment Copyright 2012 © Open IPTV Forum e.V.

Annex N. Server root certificate selection policy
(informative)

N.1 Introduction
This informative annex describes the policy that is adopted for the selection of root certificates for inclusion in terminals
compliant with this specification. A list of such certificates is published at http://www.oipf.tv/root-certificates.

N.2 Background
There are over 150 root certificates in web browsers at the time of publication.

 This list changes frequently over time.

 The larger the list of root certificates the more likely it is to change.

The security of TLS against man-in-the-middle attacks is dependent on the weakest root certificate trusted by a terminal.

The security of various key lengths changes with time as computing power increases. Specifically 1024 bit RSA keys are
no longer recommended for use.

Service providers need to know which root certificates are trusted by terminals to achieve interoperability. Service
providers are often not in control of the servers delivering their content (e.g. delivery via a CDN).

Service providers may also wish to make use of third party web services that are not under their control.

Maintaining an independent list of root certificates that are validated requires significant resources.

N.3 Policy
 The Mozilla list of approved root certificates has been selected as the authoritative source for the mandatory and

optional list of root certificates for inclusion in terminals compliant with this specification. This was chosen
because:

1. The approved root certificate list is publicly available.

2. The process for inclusion in the list is open.

3. Anyone can take part in the acceptance process.

4. The acceptance process itself happens in public.

5. Metadata is provided to differentiate root certificates for web server authentication, e-mail and code
signing,

6. The procedure for requesting a root certificate for inclusion in the list requires a test website be provided
which uses that certificate.

 The Mozilla list of approved root certificates is published on their website at
http://www.mozilla.org/projects/security/certs/. Each certificate marked as approved for web server
authentication is automatically an optional root certificate as specified in section 9.1.1.3

 This specification will rely upon the Mozilla list for verifying the trustworthiness of Certificate Authorities.

 A list of root certificates that are mandatory will be maintained which will be a subset of the certificates
specified above.

1. The list will be updated periodically.

2. The list will only include certificates that use algorithms mandated by section 9.1.1.2

3. The mandatory list of certificates will be determined based on the requirements of service providers and
the Certificate Authorities that are in widespread use.

4. The list will be compiled relying upon published statistics to determine how widespread a Certificate
Authority is.

5. Certificate Authorities may be excluded from the mandatory list if they impose requirements that are
deemed unreasonable.

6. A revision history of changes to the mandatory list will be maintained and published

This policy is subject to change.

	Contents
	Figures
	Tables
	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative References
	2.2 Open IPTV Forum References
	2.3 Informative References

	3 Conventions and Terminology
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4 DAE overview
	4.1 Architecture of DAE
	4.1.1 Remote UI and box models (informative)
	4.1.1.1 i-Box model
	4.1.1.2 2-Box model
	4.1.1.3 3-Box model

	4.2 Gateway discovery and control
	4.3 Application definition
	4.3.1 Similarities between applications and traditional web pages
	4.3.2 Differences between applications and traditional web pages
	4.3.3 The application tree
	4.3.4 The application display model
	4.3.4.1 Manipulating an application’s DOM Window object

	4.3.5 The security model
	4.3.6 Inheritance of permissions
	4.3.7 Privileged application APIs
	4.3.7.1 Compromising the security

	4.3.8 Active applications list

	4.4 Resource Management
	4.4.1 Application lifecycle issues
	4.4.2 Caching of application files
	4.4.3 Memory usage
	4.4.4 Instantiating embedded objects and claiming scarce system resources
	4.4.5 Media control
	4.4.6 Use of the display
	4.4.7 Cross-application event handling
	4.4.8 Browser History

	4.5 Parental access control
	4.6 Content download
	4.6.1 Download manager
	4.6.2 Content Access Download Descriptor
	4.6.3 Triggering a download
	4.6.3.1 Using the registerDownload() method
	4.6.3.2 Using the registerDownloadURL() method
	4.6.3.3 Using the optional registerDownloadFromCRID() method
	4.6.3.4 General behaviour regarding triggering a download

	4.6.4 Download protocol(s)

	4.7 Streaming CoD
	4.7.1 Unicast streaming
	4.7.2 Multicast streaming

	4.8 Scheduled content
	4.8.1 Conveyance of channel list
	4.8.1.1 Method 1: JavaScript method “getChannelConfig()”
	4.8.1.2 Method 2: HTTP POST message

	4.8.2 Conveyance of channel list and list of scheduled recordings

	4.9 Display Model

	5 DAE Application Model
	5.1 Application lifecycle
	5.1.1 Creating a new application
	5.1.1.1 General
	5.1.1.2 Broadcast-independent applications
	5.1.1.3 Using the Application.createApplication API call
	5.1.1.4 CE-HTML third party notifications
	5.1.1.5 Starting applications from SD&S Signalling
	5.1.1.6 Applications started by the DRM agent
	5.1.1.7 Applications provided by the AG through the remote UI

	5.1.2 Stopping an application
	5.1.3 Application Boundaries

	5.2 Application announcement & signalling
	5.2.1 Introduction
	5.2.2 General
	5.2.3 Broadcast related applications
	5.2.3.1 General
	5.2.3.2 Stopping
	5.2.3.3 Procedure for starting and stopping broadcast related applications on channel change
	5.2.3.4 Procedure for starting and stopping broadcast related applications when signalling is updated

	5.2.4 Service provider related applications
	5.2.4.1 Signalling
	5.2.4.2 Starting
	5.2.4.3 Stopping

	5.2.5 Broadcast independent applications
	5.2.6 Switching between applications
	5.2.7 Signalling format

	5.3 Event Notifications
	5.3.1 Event notification framework based on CEA 2014
	5.3.1.1 In-session event notification
	5.3.1.2 Out of session event notification

	5.3.2 IMS event notification framework
	5.3.2.1 HNI-IGI transactions for in-session out-going request messages
	5.3.2.2 HNI-IGI transaction for in-session incoming request messages
	5.3.2.3 HNI-IGI transaction for out of session incoming request messages

	6 Formats
	6.1 CE-HTML
	6.2 CE-HTML referenced formats
	6.3 Media formats
	6.3.1 Media format of A/V media except for audio from memory
	6.3.2 Media format of A/V media for audio from memory
	6.3.3 Media transport

	6.4 SVG
	6.4.1 Supporting SVG documents
	6.4.2 Supporting DOM access between CE-HTML and SVG
	6.4.2.1 Parent CE-HTML access to child SVG
	6.4.2.2 Child SVG access to parent CE-HTML
	6.4.2.3 Parent SVG access to child CE-HTML
	6.4.2.4 Child CE-HTML access to parent SVG
	6.4.2.5 Event propagation
	6.4.2.5.1 DocumentEvent
	6.4.2.5.2 EventTarget

	6.4.3 Attention to DAE application developers
	6.4.3.1 Script APIs defined in DAE
	6.4.3.2 Codec and connection supporting in SVG

	7 APIs
	7.1 Object factory API
	7.1.1 Methods
	7.1.1.1 Visual objects
	7.1.1.2 Non-Visual objects

	7.1.2 Examples

	7.2 Applications Management APIs
	7.2.1 The application/oipfApplicationManager embedded object
	7.2.1.1 Properties
	7.2.1.2 Methods
	7.2.1.3 Events

	7.2.2 The Application class
	7.2.2.1 Properties
	7.2.2.2 Methods

	7.2.3 The ApplicationCollection class
	7.2.3.1 Properties
	7.2.3.2 Methods

	7.2.4 The ApplicationPrivateData class
	7.2.4.1 Properties
	7.2.4.2 Methods

	7.2.5 The Keyset class
	7.2.5.1 Constants
	7.2.5.2 Properties
	7.2.5.3 Methods

	7.2.6 New DOM events for application support
	7.2.7 Examples (informative)
	7.2.7.1 Locating the Application object
	7.2.7.2 Creating a new application

	7.3 Configuration and setting APIs
	7.3.1 The application/oipfConfiguration embedded object
	7.3.1.1 Properties
	7.3.1.2 Events

	7.3.2 The Configuration class
	7.3.2.1 Properties
	7.3.2.2 Methods

	7.3.3 The LocalSystem class
	7.3.3.1 Properties
	7.3.3.2 Methods

	7.3.4 The NetworkInterface class
	7.3.4.1 Properties

	7.3.5 The AVOutput class
	7.3.5.1 Properties

	7.3.6 The NetworkInterfaceCollection class
	7.3.6.1 Properties
	7.3.6.2 Methods

	7.3.7 The AVOutputCollection class
	7.3.7.1 Properties
	7.3.7.2 Methods

	7.4 Content download APIs
	7.4.1 The application/oipfDownloadTrigger embedded object
	7.4.1.1 Methods

	7.4.2 Extensions to application/oipfDownloadTrigger
	7.4.3 The application/oipfDownloadManager embedded object
	7.4.3.1 State diagram for the application/oipfDownloadManager object
	7.4.3.2 Properties
	7.4.3.3 Methods
	7.4.3.4 Events

	7.4.4 The Download class
	7.4.4.1 Properties

	7.4.5 The DownloadCollection class
	7.4.5.1 Properties
	7.4.5.2 Methods

	7.4.6 The DRMControlInformation class
	7.4.6.1 Properties

	7.4.7 The DRMControlInfoCollection class
	7.4.7.1 Properties
	7.4.7.2 Methods

	7.5 Content On Demand Metadata APIs
	7.5.1 The application/oipfCodManager embedded object
	7.5.1.1 Properties
	7.5.1.2 Events

	7.5.2 The CatalogueCollection class
	7.5.2.1 Properties
	7.5.2.2 Methods

	7.5.3 The ContentCatalogue class
	7.5.3.1 Properties
	7.5.3.2 Methods

	7.5.4 The ContentCatalogueEvent class
	7.5.5 The CODFolder class
	7.5.5.1 Properties
	7.5.5.2 Methods

	7.5.6 The CODAsset class
	7.5.6.1 Properties
	7.5.6.2 Methods

	7.5.7 The CODService class
	7.5.7.1 Properties
	7.5.7.2 Methods

	7.6 Content Service Protection API
	7.6.1 The application/oipfDrmAgent embedded object
	7.6.1.1 Properties
	7.6.1.2 Methods
	7.6.1.3 Events

	7.7 Gateway Discovery and Control APIs
	7.7.1 The application/oipfGatewayInfo embedded object
	7.7.1.1 Properties
	7.7.1.2 Methods
	7.7.1.3 Events

	7.8 Communication Services APIs
	7.8.1 The application/oipfCommunicationServices embedded object
	7.8.1.1 Constants
	7.8.1.2 Properties
	7.8.1.3 Methods
	7.8.1.4 Events

	7.8.2 Extensions to application/oipfCommunicationServices for presence and messaging services
	7.8.2.1 Properties
	7.8.2.2 Methods
	7.8.2.3 Events

	7.8.3 The UserData class
	7.8.3.1 Properties

	7.8.4 The UserDataCollection class
	7.8.4.1 Properties
	7.8.4.2 Methods

	7.8.5 The FeatureTag class
	7.8.5.1 Properties

	7.8.6 The FeatureTagCollection class
	7.8.6.1 Properties
	7.8.6.2 Methods

	7.8.7 The Contact class
	7.8.7.1 Properties

	7.8.8 The ContactCollection class
	7.8.8.1 Properties
	7.8.8.2 Methods

	7.9 Parental rating and parental control APIs
	7.9.1 The application/oipfParentalControlManager embedded object
	7.9.1.1 Properties
	7.9.1.2 Methods

	7.9.2 The ParentalRatingScheme class
	7.9.2.1 Properties
	7.9.2.2 Methods

	7.9.3 The ParentalRatingSchemeCollection class
	7.9.3.1 Properties
	7.9.3.2 Methods

	7.9.4 The ParentalRating class
	7.9.4.1 Properties

	7.9.5 The ParentalRatingCollection class
	7.9.5.1 Properties
	7.9.5.2 Methods

	7.10 Scheduled Recording APIs
	7.10.1 The application/oipfRecordingScheduler embedded object
	7.10.1.1 Methods

	7.10.2 The ScheduledRecording class
	7.10.2.1 Constants
	7.10.2.2 Properties

	7.10.3 The ScheduledRecordingCollection class
	7.10.3.1 Properties
	7.10.3.2 Methods

	7.10.4 Extension to application/oipfRecordingScheduler for control of recordings
	7.10.4.1 Properties
	7.10.4.2 Methods
	7.10.4.3 Events

	7.10.5 The Recording class
	7.10.5.1 Properties

	7.10.6 The RecordingCollection class
	7.10.7 The PVREvent class
	7.10.8 The Bookmark class
	7.10.8.1 Properties

	7.10.9 The BookmarkCollection class
	7.10.9.1 Properties
	7.10.9.2 Methods

	7.11 Remote Management APIs
	7.11.1 The application/oipfRemoteManagement embedded object
	7.11.1.1 Properties
	7.11.1.2 Methods

	7.12 Metadata APIs
	7.12.1 The application/oipfSearchManager embedded object
	7.12.1.1 Properties
	7.12.1.2 Methods

	7.12.2 The MetadataSearch class
	7.12.2.1 Properties
	7.12.2.2 Methods

	7.12.3 The Query class
	7.12.3.1 Properties
	7.12.3.2 Methods

	7.12.4 The SearchResults class
	7.12.4.1 Properties
	7.12.4.2 Methods

	7.12.5 The MetadataSearchEvent class
	7.12.6 The MetadataUpdateEvent class

	7.13 Scheduled content and hybrid tuner APIs
	7.13.1 The video/broadcast embedded object
	7.13.1.1 State diagram for video/broadcast objects
	7.13.1.2 Properties
	7.13.1.3 Methods
	7.13.1.4 Events
	7.13.1.5 Styling

	7.13.2 Extensions to video/broadcast for recording and time-shift
	7.13.2.1 Additional constants for video/broadcast object
	7.13.2.2 Additional properties for video/broadcast object
	7.13.2.3 Additional methods for video/broadcast object
	7.13.2.4 Events

	7.13.3 Extensions to video/broadcast for access to EIT p/f
	7.13.4 Extensions to video/broadcast for playback of selected components
	7.13.5 Extensions to video/broadcast for parental ratings errors
	7.13.5.1 Events

	7.13.6 Extensions to video/broadcast for DRM rights errors
	7.13.7 Extensions to video/broadcast for current channel information
	7.13.7.1 Properties

	7.13.8 Extensions to video/broadcast for creating channel lists from SD&S fragments
	7.13.9 The ChannelConfig class
	7.13.9.1 Properties
	7.13.9.2 Methods
	7.13.9.3 Events

	7.13.10 The ChannelList class
	7.13.10.1 Properties
	7.13.10.2 Methods

	7.13.11 The Channel class
	7.13.11.1 Constants
	7.13.11.2 Properties
	7.13.11.3 Metadata extensions to Channel
	7.13.11.3.1 Properties
	7.13.11.3.2 Methods

	7.13.12 The FavouriteListCollection class
	7.13.12.1 Properties
	7.13.12.2 Methods
	7.13.12.3 Extensions to FavouriteListCollection

	7.13.13 The FavouriteList class
	7.13.13.1 Properties
	7.13.13.2 Methods
	7.13.13.3 Extensions to FavouriteList

	7.14 Media playback APIs
	7.14.1 The CEA 2014 A/V Control embedded object
	7.14.1.1 State diagram for A/V control objects
	7.14.1.2 Using an A/V control object to play streaming content
	7.14.1.3 Using an A/V control object to play downloaded content
	7.14.1.4 Using an A/V control object to play recorded content

	7.14.2 Extensions to A/V object for playback through Content-Access Streaming Descriptor
	7.14.3 Extensions to A/V object for trickmodes
	7.14.3.1 Properties
	7.14.3.2 Events

	7.14.4 Extensions to A/V object for playback of selected components
	7.14.5 Extensions to A/V object for parental rating errors
	7.14.5.1 Events

	7.14.6 Extensions to A/V object for DRM rights errors
	7.14.7 Extensions to A/V object for playing media objects
	7.14.8 Extensions to A/V object for UI feedback of buffering A/V content
	7.14.8.1 Properties
	7.14.8.2 Methods
	7.14.8.3 DOM 2 events for A/V object

	7.14.9 DOM 2 events for A/V object
	7.14.10 Playback of memory audio
	7.14.10.1 Usage of CE-HTML tags
	7.14.10.2 Usage of DOM interface
	7.14.10.3 Example usage (informative)

	7.15 Miscellaneous APIs
	7.15.1 The application/oipfMDTF embedded object
	7.15.1.1 Properties
	7.15.1.2 Methods
	7.15.1.3 Events

	7.15.2 The application/oipfStatusView embedded object
	7.15.2.1 Overview of download status
	7.15.2.1.1 Methods

	7.15.2.2 Overview of recordings

	7.15.3 The application/oipfCapabilities embedded object
	7.15.3.1 Properties
	7.15.3.2 Methods

	7.15.4 The Navigator class
	7.15.4.1 Properties

	7.15.5 Debug print API

	7.16 Shared Utility classes and features
	7.16.1 The StringCollection class
	7.16.1.1 Properties
	7.16.1.2 Methods

	7.16.2 The Programme class
	7.16.2.1 Constants
	7.16.2.2 Properties
	7.16.2.3 Metadata extensions to Programme
	7.16.2.3.1 Properties
	7.16.2.3.2 Methods

	7.16.2.4 DVB-SI extensions to Programme
	7.16.2.5 Recording extensions to Programme

	7.16.3 The ProgrammeCollection class
	7.16.3.1 Properties
	7.16.3.2 Methods

	7.16.4 The DiscInfo class
	7.16.4.1 Properties

	7.16.5 Extensions for playback of selected media components
	7.16.5.1 Media playback extensions
	7.16.5.1.1 Constants
	7.16.5.1.2 Properties
	7.16.5.1.3 Methods
	7.16.5.1.4 Events

	7.16.5.2 The AVComponent class
	7.16.5.2.1 Properties

	7.16.5.3 The AVVideoComponent class
	7.16.5.3.1 Properties

	7.16.5.4 The AVAudioComponent class
	7.16.5.4.1 Properties

	7.16.5.5 The AVSubtitleComponent class
	7.16.5.5.1 Properties

	7.16.5.6 The AVComponentCollection class
	7.16.5.6.1 Properties
	7.16.5.6.2 Methods

	8 System integration aspects
	8.1 HTTP Protocol
	8.1.1 HTTP User-Agent header

	8.2 Mapping from APIs to Protocols
	8.2.1 Network (Common to Managed and Unmanaged Services)
	8.2.1.1 Download CoD

	8.2.2 OITF-IG Interface (Managed Services Only)
	8.2.2.1 Streaming CoD
	8.2.2.2 Scheduled Content
	8.2.2.2.1 Conveyance of channel list
	8.2.2.2.2 Switching channels
	8.2.2.2.3 End broadcast service

	8.2.2.3 Communication Services APIs

	8.2.3 Network (Unmanaged Services only)
	8.2.3.1 Streaming CoD
	8.2.3.2 Scheduled content
	8.2.3.2.1 Switching channels
	8.2.3.2.2 End broadcast service

	8.3 URI Schemes and their usage
	8.4 Mapping from APIs to Content Formats
	8.4.1 Character Conversion
	8.4.2 AVComponent
	8.4.3 Channel
	8.4.4 Programme, ScheduledRecording, Recording and Download
	8.4.5 Exposing Audio Description streams as AVComponent objects

	9 Capabilities
	9.1 Minimum DAE capability requirements
	9.1.1 SSL/TTLS Requirements
	9.1.1.1 SSL/TLS Support
	9.1.1.2 Cipher Suites
	9.1.1.3 Root Certificates

	9.2 Default UI profiles
	9.3 CEA-2014 capability negotiation and extensions
	9.3.1 Tuner/broadcast capability indication
	9.3.2 Broadcasted content over IP capability indication
	9.3.3 PVR capability indication
	9.3.4 Download CoD capability indication
	9.3.5 Parental ratings
	9.3.6 Extended A/V API support
	9.3.7 OITF Metadata API support
	9.3.8 OITF Configuration API support
	9.3.9 Communication Services API Support
	9.3.10 DRM capability indication
	9.3.11 Media profile capability indication
	9.3.12 Remote diagnostics support
	9.3.13 SVG
	9.3.14 Third party notification support
	9.3.15 Multicast Delivery Terminating Function support
	9.3.16 Other capability extensions

	10 Security
	10.1 Application / Service Security
	10.1.1 OITF requirements
	10.1.2 Server requirements
	10.1.3 Specific security requirements for privileged JavaScript APIs
	10.1.3.1 Security requirements for tuner control and lineup
	10.1.3.1.1 Security requirements for exposure of the tuner channel lineup
	10.1.3.1.2 Security requirements for tuner control

	10.1.3.2 Security requirements for recording
	10.1.3.3 Security requirements for content download functionality
	10.1.3.4 Security requirements for DRM related functionality
	10.1.3.5 Security requirements for IMS functionality
	10.1.3.6 Security requirements for metadata processing functionality
	10.1.3.7 Security requirements for configuration and settings functionality
	10.1.3.8 Security requirements for APIs for OITFs under the control of a service provider
	10.1.3.9 Security requirements for remote diagnostics and management API
	10.1.3.10 Security requirements for parental control manager

	10.1.4 Permission names
	10.1.5 Loading documents from different domains

	10.2 User Authentication
	E.1 Content Access Download Descriptor Format
	E.2 Content Access Streaming Descriptor Format
	E.3 Abstract Content Access Descriptor Format
	H.1 Logical plane model
	H.2 Interaction with the video/broadcast and A/V Control objects
	H.3 Graphic safe area (informative)
	H.4 Current Channel (informative)
	N.1 Introduction
	N.2 Background
	N.3 Policy

